scholarly journals Prediction of Abrasive and Impact Wear Due to Multi-Shaped Particles in a Centrifugal Pump via CFD-DEM Coupling Method

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2391
Author(s):  
Cheng Tang ◽  
You-Chao Yang ◽  
Peng-Zhan Liu ◽  
Youn-Jea Kim

Since solid particles suspended in the fluid can cause wear in centrifugal pumps, intensive attention has been focused on the numerical prediction for the wear of flow parts in centrifugal pumps. However, most numerical studies have focused on only one wear model and a sphere particle model. The impact of particle shape on the wear of flow parts in centrifugal pumps is under-studied, particularly considering abrasive and impact wear simultaneously. In this work, the Computational Fluid Dynamics (CFD)-Discrete Element Method (DEM) coupling method with an abrasive and impact wear prediction model was adopted to study the wear characteristics of a centrifugal pump. Moreover, four regular polyhedron particles and a sphere particle with the same equivalent diameter but different sphericity were mainly analyzed. The results demonstrate that more particles move closer to the blade pressure side in the impeller passage, and particles tend to cluster in specific areas within the volute as sphericity increases. The volute suffers the principal wear erosion no matter what the shapes of particles and wear model are. Both the impact and abrasive wear within the impeller occur primarily on the blade leading edge. The pump’s overall impact wear rate decreases first and then increases with particle sphericity rising, while the pump’s overall abrasive wear rate grows steadily.

2019 ◽  
Vol 71 (7) ◽  
pp. 893-900 ◽  
Author(s):  
Lei Dong ◽  
Xiaoyu Zhang ◽  
Kun Liu ◽  
Xiaojun Liu ◽  
Ruiming Shi ◽  
...  

Purpose The purpose of this paper is to investigate the tribological properties of the WC/TiC-Co substrate under different loading conditions under three impact abrasive wear conditions. Design/methodology/approach The three body collisional wear behavior of Co alloy with WC and TiC at three impact energy was studied from 1 to 3 J. Meanwhile, the microstructure, hardness, phase transformation and wear behavior of these specimens were investigated by scanning electron microscopy, Rockwell hardness (HRV), EDS and impact wear tester. The resulting wear rate was quantified by electronic balance measurements under different pressures. Findings The specific wear rate increases with the increase of the nonlinearity of the impact energy and the increase in the content of WC or TiC. The effect of TiC on wear rate is greater than that of WC, but the hardness is smaller. The wear characteristics of the samples are mainly characterized by three kinds of behavior, such as cutting wear, abrasive wear and strain fatigue wear. The WC-Co with fewer TiC samples suffered heavier abrasive wear than the more TiC samples under both low and high impact energy and underwent fewer strain fatigue wears under high impact energy. Originality/value The experimental results show that the wear resistance of the Co alloy is improved effectively and the excellent impact wear performance is achieved. The results can be used in cutting tools such as coal mine cutting machines or other fields.


2020 ◽  
pp. 306-308
Author(s):  
V.S. Bochkov

The relevance of the search for solutions to increase the wear resistance of bucket teeth of excavating machine type front shovel is analyzed. The reasons for the wear of the teeth are considered. It is determined that when excavating machines work for rocks of VIII and IX categories, impact-abrasive wear of the inner side of the teeth and abrasive external wear occurs. It is proved that the cold-work hardening of Hadfield steel (the teeth material), which occurs during the excavating machine teeth work in the rocks of VIII and IX categories, reduces the impact-abrasive wear rate on the inner side of the teeth and does not affect the abrasive wear of the outer. The methods for thermomechanical treatment of the outer side of the excavating machine tooth is proposed. It can increase the wear resistance of Hadfield steel (110G13L) up to 1.7 times and lead to the self-sharpening effect of the tooth due to equalization of the wear rate of the outer and inner parts of the tooth. The efficiency factor of thermomechanical treatment to reduce the of abrasive wear rate of Hadfield steel is experimentally proved.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Fathoni ◽  
Syahrizal Dwi

ABSTRACTThe utilization and existence of centrifugal machine pumps in the industrial world is very important to assist the production process, at least almost 75% of industries use this type of machine pump. As an operational tool in the industry, centrifugal pumps must be able to be used and maintained properly because the damage to the pumping machine causes the operational or production process to be not maximal even can lead to cessation of the production process, and the impact on financial losses are not small. This study aims to create a knowledge management design to assist in the manufacture of software so that ultimately can facilitate the users (technicians) centrifugal pump machine do maintenance and repair the machine. To achieve the purpose of the research the researcher uses the stages of research consisting of three stages, namely: Phase 1. Preparation and Identification of knowledge; Phase 2. Analysis and Design of Knowledge Management and Phase 3. Design of Knowledge Management Prototype. Meanwhile, to manage the knowledge and explicit knowledge of the researcher using Case-Based Reasoning (CBR) method by using Nearest Neighbor Retrieval algorithm to find the best solution in maintaining and repairing centrifugal pump machine by calculating the proximity between new technical constraints and the old technical obstacle already in the database. This study resulted in a knowledge management design consisting of functional requirements and flow and software algorithms to assist application developers in the creation of knowledge management software interfaces to maintain and repair centrifugal pump machines.Keywords: Centrifugal Pump Machine, Knowledge Management, Case-Based Reasoning


2020 ◽  
Vol 117 (6) ◽  
pp. 608
Author(s):  
Sahraoui Aissat ◽  
Mohamed Zaid ◽  
Abdelhamid Sadeddine

The grinding ball is manufactured by the Algerian Foundries (ALFET – Tiaret). It is used by the cement industry to transform the rock into fine, used in the cement manufacture. This product undergoes very frequent wear. This wear occurs in various forms (abrasion wear and impact wear) and each has a varying impact on this product life. Abrasion wear is the result of friction between many surfaces (rock, crusher shielding and balls between them), between which a sliding contact occurs, and causes a metal wrenching and a mechanical disintegration of these surfaces. The impact wear is the result of the shock between these surfaces (rock, crusher shielding and balls) and the ball that hits these surfaces from multiple angles, causes their disintegration. Generally, wear resistance improves when hardness increases and a very hard material is more resistant to wear because it less risk to seize in presence of particles abrasive and it opposes their penetration in its surface layer. Wear is estimated, in this work, by the mass loss of the heat-treated balls. A correlation between the hardness and abrasive wear of the balls is established in this work.


Author(s):  
Enver Karakas ◽  
Nehir Tokgoz ◽  
Hiroyoshi Watanabe ◽  
Matteo Aureli ◽  
Cahit Evrensel

Abstract This paper investigates and compares four commonly used flow transport equation-based cavitation models and their applicability to predict the cavitation performance and bubble dynamics of an industrial centrifugal pump with a helical inducer. The main purpose of this study is to identify the most appropriate cavitation model and the associated empirical constants for calculating the cavitation performance of centrifugal pumps with inducers. Each cavitation model is reviewed in detail and the uniqueness of each model is outlined. These cavitation models are incorporated in a computational fluid dynamics code to study the vaporization and condensation transport rate of the fluid. Experimental tests are conducted on the pump to determine the true cavitation performance in terms of Net Positive Suction Head (NPSH). Experimental results are compared to simulation results for different cavitation models to validate accuracy and assumptions of each model, along with the empirical constants. Lastly, bubble formation, cavitation inception, and bubble growth predicted by each cavitation model are compared with the experimental results. A sensitivity analysis is conducted in order to determine the impact of each set of empirical constants to the condensation and the vaporization rate in the centrifugal pump. Results show that two of the cavitation models exhibit high dependency on the empirical constants in terms of change in vaporization rate. Modifications to empirical constants for two of the four cavitation models are suggested to obtain agreement with the experimentally observed cavitation behavior and better predict NPSH performance for the industrial pump studied.


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Berli Paripurna Kamiel ◽  
Yusuf Ahmad ◽  
Krisdiyanto Krisdiyanto

Cavitation is a phenomenon that often occurs in the centrifugal pumps. The impact of cavitation is a decrease in pump performance which will affect the ongoing production process in the industries. It is important to have a method to detect the phenomenon of cavitation early. The vibration signal is a parameter that is often used in detecting cavitation or other faulty components. One of the methods is based on the pattern recognition i.e. machine learning. Linear Discriminant Analysis (LDA) is a machine learning algorithm that has the advantage of reducing the parameters used into low dimensions without reducing the accuracy of their classification. The study proposes LDA to classify normal conditions, initial cavitation, intermediate cavitation and severe cavitation. The recording of the vibration signal is taken using the an accelerometer mounted on the inlet of the centrifugal pump. The vibration signal is then extracted using 10 statistic parameters of time domain as the LDA feature selection, namely mean, RMS, standard deviation, kurtosis, skewness, crest factor, clearance factor, shape factor, variance and peak value. The results shows that the LDA classifier can detect and classify cavitation conditions with an accuracy rate of 98.8% on training and 99.6% on testing. The shape factor, kurtosis, skewness and RMS parameters are a combination of parameters that have a large contribution to the classifier to detect and classify cavitation conditions.Keywords: Linear Discriminant Analysis (LDA), cavitation, centrifugal pump, statistical parameter


Author(s):  
A. Farid Ayad ◽  
H. M. Abdalla ◽  
A. Abou El-Azm

Centrifugal pumps (CP) are probably among the most often used machinery in industrial facilities as well as in common practice. Compared to other types of rotating pumps, CP yield higher efficiency. In aerospace application reducing the weight of the CP impeller has the advantage of reducing mechanical stresses and enable using the CP at high number of revolution. In order to minimize the impeller weight the requirements to study and develop the CP with semi-open impeller appears. Using this type of impeller results in clearance between the impeller blades and the casing which degrade the centrifugal pump performance. The impact of this side clearance has not been deeply investigated in open literature. The present paper is devoted to reveal more details about the impact of CP side clearance on its performance. This is done by numerically investigating the influence of the variation of the CP side clearance width (0:0.2 impeller width) on the CP performance parameters at different flow rates (0:5 Liter/s). These CP performance parameters include the pump head, efficiency, slip factor, blades loads and the internal flow structure. 3-D steady numerical simulation has been carried out using commercial software, ANSYS® CFX. The computational domain consists of four zones: inlet, side gab, impeller and volute with outlet. They are defined by means of the multi-reference frame technique. The impeller is situated in the rotating reference frame, while the inlet, side gab and outlet zones are in the fixed reference frame, and they are related to each other through the “frozen rotor” interface. The meshes of four computational domains are generated separately after performing mesh sensitivity analysis. The boundary conditions are set as total pressure at inlet and the mass flow at outlet. A no-slip condition is imposed at the wall boundary defined at the blade and casing. A turbulent, incompressible flow solver has been adapted using SST k–ω turbulent model. The numerical simulation has been compared with own experimental results and a published empirical formulas to verify the numerical solution. The CFD results show an acceptable agreement with the results of the experimental work and the empirical formulas. It has been shown that the impeller side clearance have a great regression effect on the centrifugal pump performance. An explanation to the performance regression has been proposed based on the flow field feature. Performance regression could be attributed to the drop in the pressure difference between the impeller inlet and outlet. And the redistribution of the velocity inside the impeller channel and the side clearance.


Sign in / Sign up

Export Citation Format

Share Document