Oxidative Stress and the Epigenetics of Cell Senescence: Insights from Progeroid Syndromes

2019 ◽  
Vol 24 (40) ◽  
pp. 4755-4770 ◽  
Author(s):  
Carlos Romá-Mateo ◽  
Marta Seco-Cervera ◽  
José S. Ibáñez-Cabellos ◽  
Giselle Pérez ◽  
Ester Berenguer-Pascual ◽  
...  

Background: Cell senescence constitutes a critical process to respond to a variety of insults and adverse circumstances. Senescence involves the detention of DNA replication and cell proliferation, and hence, genetic programs associated with DNA damage response, chromosome stability, chromatin rearrangement, epigenetic reprogramming, and cell cycle are tightly linked to the senescent phenotype. Although senescence increases with age, the real implication of senescence regulation in the progress of aging in humans is largely discussed. In this context, reactive oxygen species (ROS) accumulation has also been postulated to play a critical role in cell homeostasis, aging processes, and control of proliferation. Methods: The previous years have produced a high increase in data that refine our understanding of the role of ROS, and their relationship with epigenetic events, in determining cellular fate. Results: The accumulating evidence regarding the epigenetic regulation of ROS-mediated processes provides promising tools to deepen in our comprehension of the process of senescence, and to develop novel therapeutic strategies. In this review, we aim to provide an overview of the relationships between oxidative stress and cell senescence. Conclusion: We provide information about the role of epigenetic regulation in senescence and aging, collecting recent data from some examples of progeroid syndromes in which cell senescence, oxidative stress and epigenetic mechanisms are severely impaired. Finally, a collection of data is presented regarding current pharmacological approaches that either target or use oxidative stress-related factors or epigenetic regulators as strategies for disease treatment.

2020 ◽  
Vol 17 (4) ◽  
pp. 394-401
Author(s):  
Yuanhua Wu ◽  
Yuan Huang ◽  
Jing Cai ◽  
Donglan Zhang ◽  
Shixi Liu ◽  
...  

Background: Ischemia/reperfusion (I/R) injury involves complex biological processes and molecular mechanisms such as autophagy. Oxidative stress plays a critical role in the pathogenesis of I/R injury. LncRNAs are the regulatory factor of cerebral I/R injury. Methods: This study constructs cerebral I/R model to investigate role of autophagy and oxidative stress in cerebral I/R injury and the underline regulatory mechanism of SIRT1/ FOXO3a pathway. In this study, lncRNA SNHG12 and FOXO3a expression was up-regulated and SIRT1 expression was down-regulated in HT22 cells of I/R model. Results: Overexpression of lncRNA SNHG12 significantly increased the cell viability and inhibited cerebral ischemicreperfusion injury induced by I/Rthrough inhibition of autophagy. In addition, the transfected p-SIRT1 significantly suppressed the release of LDH and SOD compared with cells co-transfected with SIRT1 and FOXO3a group and cells induced by I/R and transfected with p-SNHG12 group and overexpression of cells co-transfected with SIRT1 and FOXO3 further decreased the I/R induced release of ROS and MDA. Conclusion: In conclusion, lncRNA SNHG12 increased cell activity and inhibited oxidative stress through inhibition of SIRT1/FOXO3a signaling-mediated autophagy in HT22 cells of I/R model. This study might provide new potential therapeutic targets for further investigating the mechanisms in cerebral I/R injury and provide.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 102
Author(s):  
Federico Pietrocola ◽  
José Manuel Bravo-San Pedro

Reactive oxygen species (ROS) operate as key regulators of cellular homeostasis within a physiological range of concentrations, yet they turn into cytotoxic entities when their levels exceed a threshold limit. Accordingly, ROS are an important etiological cue for obesity, which in turn represents a major risk factor for multiple diseases, including diabetes, cardiovascular disorders, non-alcoholic fatty liver disease, and cancer. Therefore, the implementation of novel therapeutic strategies to improve the obese phenotype by targeting oxidative stress is of great interest for the scientific community. To this end, it is of high importance to shed light on the mechanisms through which cells curtail ROS production or limit their toxic effects, in order to harness them in anti-obesity therapy. In this review, we specifically discuss the role of autophagy in redox biology, focusing on its implication in the pathogenesis of obesity. Because autophagy is specifically triggered in response to redox imbalance as a quintessential cytoprotective mechanism, maneuvers based on the activation of autophagy hold promises of efficacy for the prevention and treatment of obesity and obesity-related morbidities.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Sung Ryul Lee

Zinc is recognized as an essential trace metal required for human health; its deficiency is strongly associated with neuronal and immune system defects. Although zinc is a redox-inert metal, it functions as an antioxidant through the catalytic action of copper/zinc-superoxide dismutase, stabilization of membrane structure, protection of the protein sulfhydryl groups, and upregulation of the expression of metallothionein, which possesses a metal-binding capacity and also exhibits antioxidant functions. In addition, zinc suppresses anti-inflammatory responses that would otherwise augment oxidative stress. The actions of zinc are not straightforward owing to its numerous roles in biological systems. It has been shown that zinc deficiency and zinc excess cause cellular oxidative stress. To gain insights into the dual action of zinc, as either an antioxidant or a prooxidant, and the conditions under which each role is performed, the oxidative stresses that occur in zinc deficiency and zinc overload in conjunction with the intracellular regulation of free zinc are summarized. Additionally, the regulatory role of zinc in mitochondrial homeostasis and its impact on oxidative stress are briefly addressed.


2020 ◽  
Vol 66 (1) ◽  
pp. 47-55
Author(s):  
Era B. Popyhova ◽  
Tatiana V. Stepanova ◽  
Dar’ya D. Lagutina ◽  
Tatiana S. Kiriiazi ◽  
Alexey N. Ivanov

The vascular endothelium performs many functions. It is a key regulator of vascular homeostasis, maintains a balance between vasodilation and vasoconstriction, inhibition and stimulation of smooth muscle cell migration and proliferation, fibrinolysis and thrombosis, and is involved to regulation of platelet adhesion and aggregation. Endothelial dysfunction (ED) plays the critical role in pathogenesis of diabetes mellitus (DM) vascular complications. The purpose of this review was to consider the mechanisms leading to the occurrence of ED in DM. The paper discusses current literature data concerning the role of hyperglycemia, oxidative stress, advanced glycation end products in endothelial alteration. A separate section is devoted to the particularities of the functioning of the antioxidant system and their significance in the development of ED in DM. The analysis of the literature allows to conclude that pathological activation of glucose utilization pathways causes damage of endothelial cells, which is accompanied by disorders of all their basic functions. Metabolic disorders in DM cause a pronounced imbalance of free radical processes and antioxidant defense, accompanied by oxidative stress of endotheliocytes, which contributes to the progression of ED and the development of vascular complications. Many aspects of multicomponent regulatory reactions in the pathogenesis of the development of ED in DM have not been sufficiently studied.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 752 ◽  
Author(s):  
Rawat ◽  
Kadian ◽  
Gupta ◽  
Kumar ◽  
Chain ◽  
...  

Pancreatic cancer is one of the most aggressive malignancies, accounting for more than 45,750 deaths annually in the U.S. alone. The aggressive nature and late diagnosis of pancreatic cancer, coupled with the limitations of existing chemotherapy, present the pressing need for the development of novel therapeutic strategies. Recent reports have demonstrated a critical role of microRNAs (miRNAs) in the initiation, progression, and metastasis of cancer. Furthermore, aberrant expressions of miRNAs have often been associated with the cause and consequence of pancreatic cancer, emphasizing the possible use of miRNAs in the effective management of pancreatic cancer patients. In this review, we provide a brief overview of miRNA biogenesis and its role in fundamental cellular process and miRNA studies in pancreatic cancer patients and animal models. Subsequent sections narrate the role of miRNA in, (i) cell cycle and proliferation; (ii) apoptosis; (iii) invasions and metastasis; and (iv) various cellular signaling pathways. We also describe the role of miRNA’s in pancreatic cancer; (i) diagnosis; (ii) prognosis and (iii) therapeutic intervention. Conclusion section describes the gist of review with future directions.


Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 508 ◽  
Author(s):  
Alba Rodríguez-García ◽  
María Luz Morales ◽  
Vanesa Garrido-García ◽  
Irene García-Baquero ◽  
Alejandra Leivas ◽  
...  

Control of oxidative stress in the bone marrow (BM) is key for maintaining the interplay between self-renewal, proliferation, and differentiation of hematopoietic cells. Breakdown of this regulation can lead to diseases characterized by BM failure such as the myelodysplastic syndromes (MDS). To better understand the role of oxidative stress in MDS development, we compared protein carbonylation as an indicator of oxidative stress in the BM of patients with MDS and control subjects, and also patients with MDS under treatment with the iron chelator deferasirox (DFX). As expected, differences in the pattern of protein carbonylation were observed in BM samples between MDS patients and controls, with an increase in protein carbonylation in the former. Strikingly, patients under DFX treatment had lower levels of protein carbonylation in BM with respect to untreated patients. Proteomic analysis identified four proteins with high carbonylation levels in MDS BM cells. Finally, as oxidative stress-related signaling pathways can modulate the cell cycle through p53, we analyzed the expression of the p53 target gene p21 in BM cells, finding that it was significantly upregulated in patients with MDS and was significantly downregulated after DFX treatment. Overall, our results suggest that the fine-tuning of oxidative stress levels in the BM of patients with MDS might control malignant progression.


2019 ◽  
Vol 47 (07) ◽  
pp. 1523-1539 ◽  
Author(s):  
Wenjuan Zhang ◽  
Huifang Yang ◽  
Lingqin Zhu ◽  
Yan Luo ◽  
Lihong Nie ◽  
...  

Lycium barbarum polysaccharides (LBP) are the major ingredients of wolfberry. In this study, we investigated the role of LBP in endothelial dysfunction induced by oxidative stress and the underlying mechanisms using thoracic aortic endothelial cells of rat (RAECs) as a model. We found that Ang II inhibits cell viability of RAECs with 10[Formula: see text][Formula: see text]mol/L of Ang II treatment for 24[Formula: see text]h most potential ([Formula: see text]), the level of reactive oxygen species (ROS) is increased by Ang II treatment ([Formula: see text]), and the expression of Occludin and Zonula occludens-1 (ZO-1) is decreased by Ang II treatment ([Formula: see text]). However, preincubation of cells with LBP could inhibit the changes caused by Ang II, LBP increased cell viability ([Formula: see text]), decreased the level of ROS ([Formula: see text]), and up-regulated the expression of Occludin ([Formula: see text]) and ZO-1. In addition, Ang II treatment increased the expression of EGFR and p-EGFR (Try1172) and which can be inhibited by LBP. On the contrary, expression of ErbB2, p-ErbB2 (Try1248), PI3K, p-e-NOS (Ser1177) ([Formula: see text]), and p-AKT (Ser473) ([Formula: see text]) was inhibited by Ang II treatment and which can be increased by LBP. Treatment of the cells with inhibitors showed that the regulation of p-e-NOS and p-AKT expression by Ang II and LBP can be blocked by PI3K inhibitor wortmannin but not EGFR and ErbB2 inhibitor AC480. Taken together, our results suggested that LBP plays a critical role in maintaining the integrality of blood vessel endothelium through reduced production of ROS via regulating the activity of EGFR, ErbB2, PI3K/AKT/e-NOS, and which may offer a novel therapeutic option in the management of endothelial dysfunction.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Qingqiang Xu ◽  
Wenwen Shi ◽  
Pan Lv ◽  
Wenqi Meng ◽  
Guanchao Mao ◽  
...  

AbstractAflatoxin B1 (AFB1) is a potent hepatocarcinogen in humans and exposure to AFB1 is known to cause both acute and chronic hepatocellular injury. As the liver is known to be the main target organ of aflatoxin, it is important to identify the key molecules that participate in AFB1-induced hepatotoxicity and to investigate their underlying mechanisms. In this study, the critical role of caveolin-1 in AFB1-induced hepatic cell apoptosis was examined. We found a decrease in cell viability and an increase in oxidation and apoptosis in human hepatocyte L02 cells after AFB1 exposure. In addition, the intracellular expression of caveolin-1 was increased in response to AFB1 treatment. Downregulation of caveolin-1 significantly alleviated AFB1-induced apoptosis and decreased cell viability, whereas overexpression of caveolin-1 reversed these effects. Further functional analysis showed that caveolin-1 participates in AFB1-induced oxidative stress through its interaction with Nrf2, leading to the downregulation of cellular antioxidant enzymes and the promotion of oxidative stress-induced apoptosis. In addition, caveolin-1 was found to regulate AFB1-induced autophagy. This finding was supported by the effect that caveolin-1 deficiency promoted autophagy after AFB1 treatment, leading to the inhibition of apoptosis, whereas overexpression of caveolin-1 inhibited autophagy and accelerated apoptosis. Interestingly, further investigation showed that caveolin-1 participates in AFB1-induced autophagy by regulating the EGFR/PI3K-AKT/mTOR signaling pathway. Taken together, our data reveal that caveolin-1 plays a crucial role in AFB1-induced hepatic cell apoptosis via the regulation of oxidation and autophagy, which provides a potential target for the development of novel treatments to combat AFB1 hepatotoxicity.


2013 ◽  
Vol 127 (5) ◽  
pp. 669-680 ◽  
Author(s):  
Noriko Himori ◽  
Kotaro Yamamoto ◽  
Kazuichi Maruyama ◽  
Morin Ryu ◽  
Keiko Taguchi ◽  
...  

2009 ◽  
Vol 22 (8) ◽  
pp. 942-952 ◽  
Author(s):  
Ching-Hsuan Lin ◽  
Siwy Ling Yang ◽  
Kuang-Ren Chung

Citrus brown spot disease is caused by the necrotrophic fungus Alternaria alternata. Its pathogenic capability has been thought to depend exclusively on the production of host-selective ACT toxin. However, circumvention of plant defenses is also likely to be important for the disease process. To investigate the fungal response to host-generated reactive oxygen species (ROS), we cloned and characterized the AaAP1 gene of A. alternata, which encodes a polypeptide resembling yeast YAP1-like transcriptional activators implicated in cellular responses to stress. Expression of the AaAP1 gene in a wild-type strain was primarily induced by H2O2 or ROS-generating oxidants. Using a loss-of-function mutation in the AaAP1 gene, we demonstrated an essential requirement for oxidative tolerance during the host invasion step. Mutants lacking AaAP1 showed increased sensitivity to H2O2 and loss of fungal pathogenicity. The ΔAaAP1 null mutant did not cause any visible necrotic lesions on wounded or unwounded leaves of citrus cv. Minneola. Compared with the wild type, the null mutant displayed lower catalase, peroxidase, and superoxide dismutase activities. All mutant phenotypes were restored to the wild type in fungal strains expressing a functional copy of AaAP1. Upon exposure to H2O2, the AaAP1::sGFP (synthetic green fluorescent protein) fusion protein became localized in the nucleus. Inoculation of the mutant with NADPH oxidase inhibitors partially restored fungal pathogenicity. Our results highlight the global regulatory role of a YAP1 homolog in response to oxidative stress in A. alternata and provide insights into the critical role of ROS detoxification in the pathogenicity of A. alternata.


Sign in / Sign up

Export Citation Format

Share Document