Aging of Brain Related with Mitochondrial Dysfunctions

2020 ◽  
Vol 21 ◽  
Author(s):  
Vipin Dhote ◽  
Prem Samundre ◽  
Aditya Ganeshpurkar ◽  
Aman Upaganlawar

Abstract:: Advancing age presents a major challenge for the elderly population in terms of quality of life. The risk of cognitive impairment, motor in-coordination, and behavioral inconsistency due to neuronal damage is relatively higher in aging individuals of society. The brain, through its structural and functional integrity, regulates vital physiological events; however, the susceptibility of the brain to aging-related disturbances signal the onset of neurodegenerative diseases. Mitochondrial dysfunctions impair bioenergetic mechanism, synaptic plasticity, and calcium homeostasis in the brain, thus sufficiently implying mitochondria as a prime causal factor in accelerating aging-related neurodegeneration. We reviewed the fundamental functions of mitochondria in a healthy brain and aimed to address the key issues in aging-related diseases by asking: 1) What goes wrong with mitochondria in the aging brain? 2) What are the implications of mitochondrial damage on motor functions and psychiatric symptoms? 3) How environmental chemicals and metabolic morbidities affect mitochondrial functions? Further, we share insight on opportunities and pitfalls in drug discovery approaches targeting mitochondria to slow down the progression of aging and related neurodegenerative diseases.

2021 ◽  
Vol 13 ◽  
Author(s):  
Anna Gasiorowska ◽  
Malgorzata Wydrych ◽  
Patrycja Drapich ◽  
Maciej Zadrozny ◽  
Marta Steczkowska ◽  
...  

The elderly population is growing worldwide, with important health and socioeconomic implications. Clinical and experimental studies on aging have uncovered numerous changes in the brain, such as decreased neurogenesis, increased synaptic defects, greater metabolic stress, and enhanced inflammation. These changes are associated with cognitive decline and neurobehavioral deficits. Although aging is not a disease, it is a significant risk factor for functional worsening, affective impairment, disease exaggeration, dementia, and general disease susceptibility. Conversely, life events related to mental stress and trauma can also lead to accelerated age-associated disorders and dementia. Here, we review human studies and studies on mice and rats, such as those modeling human neurodegenerative diseases, that have helped elucidate (1) the dynamics and mechanisms underlying the biological and pathological aging of the main projecting systems in the brain (glutamatergic, cholinergic, and dopaminergic) and (2) the effect of defective glutamatergic, cholinergic, and dopaminergic projection on disabilities associated with aging and neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases. Detailed knowledge of the mechanisms of age-related diseases can be an important element in the development of effective ways of treatment. In this context, we briefly analyze which adverse changes associated with neurodegenerative diseases in the cholinergic, glutaminergic and dopaminergic systems could be targeted by therapeutic strategies developed as a result of our better understanding of these damaging mechanisms.


2018 ◽  
Vol 21 (3) ◽  
Author(s):  
Wioletta Mędrzycka-Dąbrowska ◽  
Katarzyna Kwiecień-Jaguś ◽  
Renata Piotrkowska ◽  
Piotr Jarzynkowski

The phenomenon of progressive impairment of cognitive functions is characteristic for the aging process. More than half of people over 50 complain about weakening of their previous intellectual performance, reduced mood, impaired memory, psychomotor slowing down, decreased ability to concentrate and divide attention, extend reaction time and reduce motor performance. The basis of mental changes in the elderly are changes in the brain. The changes arising in the aging brain are the result of pathological processes: metabolic and altered cerebral circulation. These changes, and mainly their extent, consequently cause brain dysfunction and are manifested mainly in the deterioration of mental functions. The brain is first and foremost the material basis of a mental life. With age, slow, cumulative and irreversible morphological and functional changes occur in the human brain. This process is slow, which is why it is accompanied by a number of compensation mechanisms. This phenomenon occurs regardless of gender. The aim of this article is to present the key issues related to memory functioning in the elderly, with particular emphasis on neurocognitive impairment after surgery.


Author(s):  
Janusz Błaszczyk

A growing body of evidence indicates that aging of the brain is strictly related to the decline of energy metabolism. In particular, in older adults, the neuronal metabolism of glucose declines steadily resulting in a growing deficit of ATP production. The decline is evoked by deficient NAD recovery in the salvage pathway and subsequent impairment of the Krebs cycle. NAD deficit impairs also the activity of NAD-dependent enzymes. All these open vicious circles of neurodegeneration and neuronal death. Some brain structures are particularly prone to aging and neurodegeneration. These are pathological foci of neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. This review article summarizes the impacts and mutual relationships between metabolic processes both on neuronal and brain levels. It also provides directions on how to reduce the risk of neurodegeneration and protect the elderly against neurodegenerative diseases.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 229
Author(s):  
JunHyuk Woo ◽  
Hyesun Cho ◽  
YunHee Seol ◽  
Soon Ho Kim ◽  
Chanhyeok Park ◽  
...  

The brain needs more energy than other organs in the body. Mitochondria are the generator of vital power in the living organism. Not only do mitochondria sense signals from the outside of a cell, but they also orchestrate the cascade of subcellular events by supplying adenosine-5′-triphosphate (ATP), the biochemical energy. It is known that impaired mitochondrial function and oxidative stress contribute or lead to neuronal damage and degeneration of the brain. This mini-review focuses on addressing how mitochondrial dysfunction and oxidative stress are associated with the pathogenesis of neurodegenerative disorders including Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and Parkinson’s disease. In addition, we discuss state-of-the-art computational models of mitochondrial functions in relation to oxidative stress and neurodegeneration. Together, a better understanding of brain disease-specific mitochondrial dysfunction and oxidative stress can pave the way to developing antioxidant therapeutic strategies to ameliorate neuronal activity and prevent neurodegeneration.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 34
Author(s):  
Kohei Segawa ◽  
Yukari Blumenthal ◽  
Yuki Yamawaki ◽  
Gen Ohtsuki

The lymphatic system is important for antigen presentation and immune surveillance. The lymphatic system in the brain was originally introduced by Giovanni Mascagni in 1787, while the rediscovery of it by Jonathan Kipnis and Kari Kustaa Alitalo now opens the door for a new interpretation of neurological diseases and therapeutic applications. The glymphatic system for the exchanges of cerebrospinal fluid (CSF) and interstitial fluid (ISF) is associated with the blood-brain barrier (BBB), which is involved in the maintenance of immune privilege and homeostasis in the brain. Recent notions from studies of postmortem brains and clinical studies of neurodegenerative diseases, infection, and cerebral hemorrhage, implied that the breakdown of those barrier systems and infiltration of activated immune cells disrupt the function of both neurons and glia in the parenchyma (e.g., modulation of neurophysiological properties and maturation of myelination), which causes the abnormality in the functional connectivity of the entire brain network. Due to the vulnerability, such dysfunction may occur in developing brains as well as in senile or neurodegenerative diseases and may raise the risk of emergence of psychosis symptoms. Here, we introduce this hypothesis with a series of studies and cellular mechanisms.


npj Vaccines ◽  
2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Changyoun Kim ◽  
Armine Hovakimyan ◽  
Karen Zagorski ◽  
Tatevik Antonyan ◽  
Irina Petrushina ◽  
...  

AbstractAccumulation of misfolded proteins such as amyloid-β (Aβ), tau, and α-synuclein (α-Syn) in the brain leads to synaptic dysfunction, neuronal damage, and the onset of relevant neurodegenerative disorder/s. Dementia with Lewy bodies (DLB) and Parkinson’s disease (PD) are characterized by the aberrant accumulation of α-Syn intracytoplasmic Lewy body inclusions and dystrophic Lewy neurites resulting in neurodegeneration associated with inflammation. Cell to cell propagation of α-Syn aggregates is implicated in the progression of PD/DLB, and high concentrations of anti-α-Syn antibodies could inhibit/reduce the spreading of this pathological molecule in the brain. To ensure sufficient therapeutic concentrations of anti-α-Syn antibodies in the periphery and CNS, we developed four α-Syn DNA vaccines based on the universal MultiTEP platform technology designed especially for the elderly with immunosenescence. Here, we are reporting on the efficacy and immunogenicity of these vaccines targeting three B-cell epitopes of hα-Syn aa85–99 (PV-1947D), aa109–126 (PV-1948D), aa126–140 (PV-1949D) separately or simultaneously (PV-1950D) in a mouse model of synucleinopathies mimicking PD/DLB. All vaccines induced high titers of antibodies specific to hα-Syn that significantly reduced PD/DLB-like pathology in hα-Syn D line mice. The most significant reduction of the total and protein kinase resistant hα-Syn, as well as neurodegeneration, were observed in various brain regions of mice vaccinated with PV-1949D and PV-1950D in a sex-dependent manner. Based on these preclinical data, we selected the PV-1950D vaccine for future IND enabling preclinical studies and clinical development.


2020 ◽  
Vol 12 ◽  
Author(s):  
Zhengran Yu ◽  
Zemin Ling ◽  
Lin Lu ◽  
Jin Zhao ◽  
Xiang Chen ◽  
...  

Osteoporosis and neurodegenerative diseases are two kinds of common disorders of the elderly, which often co-occur. Previous studies have shown the skeletal and central nervous systems are closely related to pathophysiology. As the main structural scaffold of the body, the bone is also a reservoir for stem cells, a primary lymphoid organ, and an important endocrine organ. It can interact with the brain through various bone-derived cells, mostly the mesenchymal and hematopoietic stem cells (HSCs). The bone marrow is also a place for generating immune cells, which could greatly influence brain functions. Finally, the proteins secreted by bones (osteokines) also play important roles in the growth and function of the brain. This article reviews the latest research studying the impact of bone-derived cells, bone-controlled immune system, and bone-secreted proteins on the brain, and evaluates how these factors are implicated in the progress of neurodegenerative diseases and their potential use in the diagnosis and treatment of these diseases.


2020 ◽  
Vol 21 (10) ◽  
pp. 3719 ◽  
Author(s):  
Serena Stanga ◽  
Anna Caretto ◽  
Marina Boido ◽  
Alessandro Vercelli

Mitochondria play a central role in a plethora of processes related to the maintenance of cellular homeostasis and genomic integrity. They contribute to preserving the optimal functioning of cells and protecting them from potential DNA damage which could result in mutations and disease. However, perturbations of the system due to senescence or environmental factors induce alterations of the physiological balance and lead to the impairment of mitochondrial functions. After the description of the crucial roles of mitochondria for cell survival and activity, the core of this review focuses on the “mitochondrial switch” which occurs at the onset of neuronal degeneration. We dissect the pathways related to mitochondrial dysfunctions which are shared among the most frequent or disabling neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s, Amyotrophic Lateral Sclerosis, and Spinal Muscular Atrophy. Can mitochondrial dysfunctions (affecting their morphology and activities) represent the early event eliciting the shift towards pathological neurobiological processes? Can mitochondria represent a common target against neurodegeneration? We also review here the drugs that target mitochondria in neurodegenerative diseases.


2020 ◽  
Vol 21 (19) ◽  
pp. 7152 ◽  
Author(s):  
Kyung Hee Lee ◽  
Myeounghoon Cha ◽  
Bae Hwan Lee

The brain is vulnerable to excessive oxidative insults because of its abundant lipid content, high energy requirements, and weak antioxidant capacity. Reactive oxygen species (ROS) increase susceptibility to neuronal damage and functional deficits, via oxidative changes in the brain in neurodegenerative diseases. Overabundance and abnormal levels of ROS and/or overload of metals are regulated by cellular defense mechanisms, intracellular signaling, and physiological functions of antioxidants in the brain. Single and/or complex antioxidant compounds targeting oxidative stress, redox metals, and neuronal cell death have been evaluated in multiple preclinical and clinical trials as a complementary therapeutic strategy for combating oxidative stress associated with neurodegenerative diseases. Herein, we present a general analysis and overview of various antioxidants and suggest potential courses of antioxidant treatments for the neuroprotection of the brain from oxidative injury. This review focuses on enzymatic and non-enzymatic antioxidant mechanisms in the brain and examines the relative advantages and methodological concerns when assessing antioxidant compounds for the treatment of neurodegenerative disorders.


2021 ◽  
Author(s):  
Maria Clara Lopes Rezende ◽  
Maria Luiza Franco de Oliveira ◽  
Júlia Campos Fabri ◽  
Maria Júlia Filgueiras Granato ◽  
Mariana Vanon Moreira ◽  
...  

Introduction: Creatine is important in providing energy for the resynthesis of adenosine triphosphate (ATP) and in the deposition of intracellular energy, being present mainly in muscle fibers and in the brain. Supplementation with exogenous creatine can be used in neurodegenerative disorders that are related to bioenergetic deficits in the etiology and progression of the disease. Objective: Highlight the neuroprotective mechanisms of creatine supplementation in neurodegenerative diseases. Methods: In April 2021, a search was carried out on MEDLINE, with the descriptors: “Creatine” and “Neuroprotection”; and its variations, obtained in MeSH. Studies published in the last five years were included. Results: Of the 122 articles found, four were used in this work. They concluded that creatine supplementation contributes to brain bioenergetics by increasing phosphocreatine deposits, restoring mitochondrial functions and decreasing susceptibility to apoptosis. In addition, creatine intake shortly after the diagnosis of Huntington’s and Parkinson’s Diseases can be used as a complementary therapy, because improve performance in tasks of memory and intelligence. Finally, it buffers cellular concentrations of ATP, being a possible therapeutic strategy to delay or stop neurodegeneration diseases. Conclusion: Creatine promote important neuroprotective effect, but further studies on the subject are needed.


Sign in / Sign up

Export Citation Format

Share Document