scholarly journals Aneuploid Circulating Tumor-Derived Endothelial Cell (CTEC): A Novel Versatile Player in Tumor Neovascularization and Cancer Metastasis

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1539 ◽  
Author(s):  
Peter Ping Lin

Hematogenous and lymphogenous cancer metastases are significantly impacted by tumor neovascularization, which predominantly consists of blood vessel-relevant angiogenesis, vasculogenesis, vasculogenic mimicry, and lymphatic vessel-related lymphangiogenesis. Among the endothelial cells that make up the lining of tumor vasculature, a majority of them are tumor-derived endothelial cells (TECs), exhibiting cytogenetic abnormalities of aneuploid chromosomes. Aneuploid TECs are generated from “cancerization of stromal endothelial cells” and “endothelialization of carcinoma cells” in the hypoxic tumor microenvironment. Both processes crucially engage the hypoxia-triggered epithelial-to-mesenchymal transition (EMT) and endothelial-to-mesenchymal transition (EndoMT). Compared to the cancerization process, endothelialization of cancer cells, which comprises the fusion of tumor cells with endothelial cells and transdifferentiation of cancer cells into TECs, is the dominant pathway. Tumor-derived endothelial cells, possessing the dual properties of cancerous malignancy and endothelial vascularization ability, are thus the endothelialized cancer cells. Circulating tumor-derived endothelial cells (CTECs) are TECs shed into the peripheral circulation. Aneuploid CD31+ CTECs, together with their counterpart CD31- circulating tumor cells (CTCs), constitute a unique pair of cellular circulating tumor biomarkers. This review discusses a proposed cascaded framework that focuses on the origins of TECs and CTECs in the hypoxic tumor microenvironment and their clinical implications for tumorigenesis, neovascularization, disease progression, and cancer metastasis. Aneuploid CTECs, harboring hybridized properties of malignancy, vascularization and motility, may serve as a unique target for developing a novel metastasis blockade cancer therapy.

2021 ◽  
Vol 11 ◽  
Author(s):  
Kaibo Guo ◽  
Yuqian Feng ◽  
Xueer Zheng ◽  
Leitao Sun ◽  
Harpreet S. Wasan ◽  
...  

Epithelial-to-mesenchymal transition (EMT), a complicated program through which polarized epithelial cells acquire motile mesothelial traits, is regulated by tumor microenvironment. EMT is involved in tumor progression, invasion and metastasis via reconstructing the cytoskeleton and degrading the tumor basement membrane. Accumulating evidence shows that resveratrol, as a non-flavonoid polyphenol, can reverse EMT and inhibit invasion and migration of human tumors via diverse mechanisms and signaling pathways. In the present review, we will summarize the detailed mechanisms and pathways by which resveratrol and its analogs (e.g. Triacetyl resveratrol, 3,5,4’-Trimethoxystilbene) might regulate the EMT process in cancer cells to better understand their potential as novel anti-tumor agents. Resveratrol can also reverse chemoresistance via EMT inhibition and improvement of the antiproliferative effects of conventional treatments. Therefore, resveratrol and its analogs have the potential to become novel adjunctive agents to inhibit cancer metastasis, which might be partly related to their blocking of the EMT process.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 558
Author(s):  
Jin Kyung Seok ◽  
Eun-Hee Hong ◽  
Gabsik Yang ◽  
Hye Eun Lee ◽  
Sin-Eun Kim ◽  
...  

Oxidized phospholipids are well known to play physiological and pathological roles in regulating cellular homeostasis and disease progression. However, their role in cancer metastasis has not been entirely understood. In this study, effects of oxidized phosphatidylcholines such as 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) on epithelial-mesenchymal transition (EMT) and autophagy were determined in cancer cells by immunoblotting and confocal analysis. Metastasis was analyzed by a scratch wound assay and a transwell migration/invasion assay. The concentrations of POVPC and 1-palmitoyl-2-glutaroyl-sn-glycero-phosphocholine (PGPC) in tumor tissues obtained from patients were measured by LC-MS/MS analysis. POVPC induced EMT, resulting in increase of migration and invasion of human hepatocellular carcinoma cells (HepG2) and human breast cancer cells (MCF7). POVPC induced autophagic flux through AMPK-mTOR pathway. Pharmacological inhibition or siRNA knockdown of autophagy decreased migration and invasion of POVPC-treated HepG2 and MCF7 cells. POVPC and PGPC levels were greatly increased at stage II of patient-derived intrahepatic cholangiocarcinoma tissues. PGPC levels were higher in malignant breast tumor tissues than in adjacent nontumor tissues. The results show that oxidized phosphatidylcholines increase metastatic potential of cancer cells by promoting EMT, mediated through autophagy. These suggest the positive regulatory role of oxidized phospholipids accumulated in tumor microenvironment in the regulation of tumorigenesis and metastasis.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 638
Author(s):  
Kittipong Sanookpan ◽  
Nongyao Nonpanya ◽  
Boonchoo Sritularak ◽  
Pithi Chanvorachote

Cancer metastasis is the major cause of about 90% of cancer deaths. As epithelial-to-mesenchymal transition (EMT) is known for potentiating metastasis, this study aimed to elucidate the effect of ovalitenone on the suppression of EMT and metastasis-related behaviors, including cell movement and growth under detached conditions, and cancer stem cells (CSCs), of lung cancer cells. Methods: Cell viability and cell proliferation were determined by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazo-liumbromide (MTT) and colony formation assays. Cell migration and invasion were analyzed using a wound-healing assay and Boyden chamber assay, respectively. Anchorage-independent cell growth was determined. Cell protrusions (filopodia) were detected by phalloidin-rhodamine staining. Cancer stem cell phenotypes were assessed by spheroid formation. The proteins involved in cell migration and EMT were evaluated by Western blot analysis and immunofluorescence staining. Results: Ovalitenone was used at concentrations of 0–200 μM. While it caused no cytotoxic effects on lung cancer H460 and A549 cells, ovalitenone significantly suppressed anchorage-independent growth, CSC-like phenotypes, colony formation, and the ability of the cancer to migrate and invade cells. The anti-migration activity was confirmed by the reduction of filopodia in the cells treated with ovalitenone. Interestingly, we found that ovalitenone could significantly decrease the levels of N-cadherin, snail, and slug, while it increased E-cadherin, indicating EMT suppression. Additionally, the regulatory signaling of focal adhesion kinase (FAK), ATP-dependent tyrosine kinase (AKT), the mammalian target of rapamycin (mTOR), and cell division cycle 42 (Cdc42) was suppressed by ovalitenone. Conclusions: The results suggest that ovalitenone suppresses EMT via suppression of the AKT/mTOR signaling pathway. In addition, ovalitenone exhibited potential for the suppression of CSC phenotypes. These data reveal the anti-metastasis potential of the compound and support the development of ovalitenone treatment for lung cancer therapy.


2020 ◽  
Author(s):  
Kenneth F. Fuh ◽  
Robert D. Shepherd ◽  
Jessica S. Withell ◽  
Brayden K. Kooistra ◽  
Kristina D Rinker

Abstract Background: Fluid forces are an integral part of the tumor microenvironment through all phases of development and progression. However, it is not well understood how these forces affect key steps in the progression of breast cancer of Epithelial-to-Mesenchymal Transition (EMT) and adhesion to vascular wall endothelial cells. EMT is associated with the progression of most carcinomas through induction of new transcriptional programs within affected epithelial cells, resulting in cells becoming more motile and adhesive to endothelial cells.Methods: MDA-MB-231, SK-BR-3, BT-474, and MCF-7 cells and normal Human Mammary Epithelial Cells (HMECs) were exposed to fluid flow in a parallel-plate bioreactor system. Changes in gene expression were quantified using microarrays and qPCR, gene-gene interactions were elucidated using network analysis, and key modified genes were examined in clinical datasets. Changes in protein expression of key EMT markers between chemically induced EMT and flow-exposed cells were compared in immunocytochemistry assays. Finally, the ability of flow-stimulated and unstimulated cancer cells to adhere to an endothelial monolayer was evaluated in flow and static adhesion experiments.Results: Fluid flow stimulation resulted in upregulation of EMT inducers and downregulation of repressors. Specifically, Vimentin and Snail were upregulated both at the gene and protein expression levels in flow stimulated HMECs, suggesting progression towards an EMT phenotype. Flow-induced overexpression of a panel of cell adhesion genes was also observed. Network analysis revealed genes involved in cell flow responses including FN1, PLAU, and ALCAM. When evaluated in clinical datasets, overexpression of FN1, PLAU, and ALCAM was observed in patients with most subtypes of breast cancer. We also observed increased adhesion of flow-stimulated breast cancer cells compared to unstimulated controls, suggesting an increased potential to form secondary tumors at metastatic sites. Conclusions: This study shows that prolonged fluid force exposure on the order of 1 Pa promotes EMT and adhesion of breast cancer cells to an endothelial monolayer. Further, identified biomarkers were distinctly expressed in patient populations. A better understanding of how biophysical forces such as shear stress affect cellular processes involved in metastatic progression of breast cancer is important for identifying new molecular markers for disease progression, and for predicting metastatic risk.


2020 ◽  
Vol 21 (21) ◽  
pp. 7955 ◽  
Author(s):  
Jan Korbecki ◽  
Mateusz Olbromski ◽  
Piotr Dzięgiel

A neoplastic tumor consists of cancer cells that interact with each other and non-cancerous cells that support the development of the cancer. One such cell are tumor-associated macrophages (TAMs). These cells secrete many chemokines into the tumor microenvironment, including especially a large amount of CCL18. This chemokine is a marker of the M2 macrophage subset; this is the reason why an increase in the production of CCL18 is associated with the immunosuppressive nature of the tumor microenvironment and an important element of cancer immune evasion. Consequently, elevated levels of CCL18 in the serum and the tumor are connected with a worse prognosis for the patient. This paper shows the importance of CCL18 in neoplastic processes. It includes a description of the signal transduction from PITPNM3 in CCL18-dependent migration, invasion, and epithelial-to-mesenchymal transition (EMT) cancer cells. The importance of CCL18 in angiogenesis has also been described. The paper also describes the effect of CCL18 on the recruitment to the cancer niche and the functioning of cells such as TAMs, regulatory T cells (Treg), cancer-associated fibroblasts (CAFs) and tumor-associated dendritic cells (TADCs). The last part of the paper describes the possibility of using CCL18 as a therapeutic target during anti-cancer therapy.


2016 ◽  
Vol 1 (1) ◽  
pp. 48
Author(s):  
Khemraj Singh Baghel ◽  
Smrati Bhadauria

Metastatic breast cancer is a stage of breast cancer wherever the disease has spread to distant parts of the body. Onset of metastasis is one of the biggest obstacles to the successful treatment of cancer. The potential of a tumor cell to metastasize profoundly depends on its microenvironment, or “niche” interactions with local components. Macrophages provide tropic support to tumors. Resident macrophages contribute a set of common functions, including their capability to defend against microbial infections, to maintain normal cell turnover and tissue remodelling, and to help repair sites of injury. Macrophages are recruited into the tumor microenvironment where they differentiate to become Tumor-associated-macrophages (TAMs). TAMs are the most abundant subpopulation of tumor-stroma and actively drive cancer cell invasion and metastasis. Cancer metastasis is not solely regulated by the deregulation of metastasis promoting or suppressing genes in cancer cells. Recently the interaction between the stromal cells and cancer cells has been demonstrated to promote cancer metastasis. TAMs can advocate epithelial-mesenchymal transition of cancer cells. Loss of e-cadherin, a major phenomenon of epithelial to mesenchymal transition (EMT), reduces adhesiveness and releases cancer cells to distant (secondary) sites. A positive correlation between tumor progression and the expression of matrix metallo proteinases (MMPs) in tumor tissues has been demonstrated in numerous human and animal studies. The dynamic interactions of cancer-cells with TAMs actively promote invasion-metastasis cascade through intercellular-signalling-networks that need better elucidation.


2021 ◽  
Author(s):  
Srinath Muralidharan ◽  
Sarthak Sahoo ◽  
Aryamaan Saha ◽  
Sanjay Chandran ◽  
Sauma Suvra Majumdar ◽  
...  

Cancer metastasis is the leading cause of cancer-related mortality and the process of Epithelial to Mesenchymal Transition (EMT) is crucial for cancer metastasis. Either a partial or complete EMT have been reported to influence the metabolic plasticity of cancer cells in terms of switching among oxidative phosphorylation, fatty acid oxidation and glycolysis pathways. However, a comprehensive analysis of these major metabolic pathways their associations with EMT across different cancers is lacking. Here, we analyse more than 180 cancer cell datasets and show diverse associations of these metabolic pathways with the EMT status of cancer cells. Our bulk data analysis shows that EMT generally positively correlates with glycolysis but negatively with oxidative phosphorylation and fatty acid metabolism. These correlations are also consistent at the level of their molecular master regulators, namely AMPK and HIF1α. Yet, these associations are shown to not be universal. Analysis of single-cell data of EMT induction shows dynamic changes along the different axes of metabolic pathways, consistent with general trends seen in bulk samples. Together, our results reveal underlying patterns of metabolic plasticity and heterogeneity as cancer cells traverse through the epithelial-hybrid-mesenchymal spectrum of states.


Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 618 ◽  
Author(s):  
Jeannette Huaman ◽  
Michelle Naidoo ◽  
Xingxing Zang ◽  
Olorunseun O. Ogunwobi

Metastasis is the leading cause of cancer death worldwide. Circulating tumor cells (CTCs) are a critical step in the metastatic cascade and a good tool to study this process. We isolated CTCs from a syngeneic mouse model of hepatocellular carcinoma (HCC) and a human xenograft mouse model of castration-resistant prostate cancer (CRPC). From these models, novel primary tumor and CTC cell lines were established. CTCs exhibited greater migration than primary tumor-derived cells, as well as epithelial-to-mesenchymal transition (EMT), as observed from decreased E-cadherin and increased SLUG and fibronectin expression. Additionally, when fibronectin was knocked down in CTCs, integrin B1 and SLUG were decreased, indicating regulation of these molecules by fibronectin. Investigation of cell surface molecules and secreted cytokines conferring immunomodulatory advantage to CTCs revealed decreased major histocompatibility complex class I (MHCI) expression and decreased endostatin, C-X-C motif chemokine 5 (CXCL5), and proliferin secretion by CTCs. Taken together, these findings indicate that CTCs exhibit distinct characteristics from primary tumor-derived cells. Furthermore, CTCs demonstrate enhanced migration in part through fibronectin regulation of integrin B1 and SLUG. Further study of CTC biology will likely uncover additional important mechanisms of cancer metastasis.


Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 129 ◽  
Author(s):  
Sahib Zada ◽  
Jin Hwang ◽  
Mahmoud Ahmed ◽  
Trang Lai ◽  
Trang Pham ◽  
...  

Autophagy, an intracellular degradation process, is essential for maintaining cell homeostasis by removing damaged organelles and proteins under various conditions of stress. In cancer, autophagy has conflicting functions. It plays a key role in protecting against cancerous transformation by maintaining genomic stability against genotoxic components, leading to cancerous transformation. It can also promote cancer cell survival by supplying minimal amounts of nutrients during cancer progression. However, the molecular mechanisms underlying how autophagy regulates the epithelial-to-mesenchymal transition (EMT) and cancer metastasis are unknown. Here, we show that starvation-induced autophagy promotes Snail (SNAI1) degradation and inhibits EMT and metastasis in cancer cells. Interestingly, SNAI1 proteins were physically associated and colocalized with LC3 and SQSTM1 in cancer cells. We also found a significant decrease in the levels of EMT and metastatic proteins under starvation conditions. Furthermore, ATG7 knockdown inhibited autophagy-induced SNAI1 degradation in the cytoplasm, which was associated with a decrease in SNAI1 nuclear translocation. Moreover, cancer cell invasion and migration were significantly inhibited by starvation-induced autophagy. These findings suggest that autophagy-dependent SNAI1 degradation could specifically regulate EMT and cancer metastasis during tumorigenesis.


2021 ◽  
Author(s):  
Junmin Lee ◽  
Aly Ung ◽  
Hanjun Kim ◽  
KangJu Lee ◽  
Hyun-Jong Cho ◽  
...  

Abstract Increasing evidence from cancer cell fusion with different cell types in the tumor microenvironment has suggested a probable mechanism for how metastasis-initiating cells could be generated in tumors. Although human mesenchymal stem cells (hMSCs) have been known as promising candidates to create hybrid cells with cancer cells, the role of hMSCs in fusion with cancer cells is still controversial. Here, we fabricated a liver-on-a-chip platform to monitor the fusion of liver hepatocellular cells (HepG2) with hMSCs and study their invasive potential. We demonstrated that hMSCs might play dual roles in HepG2 spheroids. The analysis of tumor growth with different fractions of hMSCs in HepG2 spheroids revealed hMSCs’ role in preventing HepG2 growth and proliferation, while the hMSCs presented in the HepG2 spheroids led to the generation of HepG2-hMSC hybrid cells with much higher invasiveness compared to HepG2. These invasive HepG2-hMSC hybrid cells expressed high levels of markers associated with stemness, proliferation, epithelial to mesenchymal transition, and matrix deposition, which corresponded to the expression of these markers for hMSCs escaping from hMSC spheroids. In addition, these fused cells were responsible for collective invasion following HepG2 by depositing Collagen I and Fibronectin in their surrounding microenvironment. Furthermore, we showed that hepatic stellate cells (HSCs) could also be fused with HepG2, and the HepG2-HSC hybrid cells possessed similar features to those from HepG2-hMSC fusion. This fusion of HepG2 with liver-resident HSCs may propose a new potential mechanism of hepatic cancer metastasis.


Sign in / Sign up

Export Citation Format

Share Document