Polymeric Nanoparticles for Transdermal Delivery of Polyphenols

2021 ◽  
Vol 18 ◽  
Author(s):  
Namratha Turuvekere Vittala Murthy ◽  
Sagar Kumar Paul ◽  
Harsh Chauhan ◽  
Somnath Singh

: Polyphenols comprises of a large group of naturally occurring plant secondary metabolites having various nutritional and health benefits. They are safe and are found abundantly in the diet. Current research on polyphenols focuses on their mechanism and their benefits on the human health. However, due to their low solubility and bioavailability, delivery from conventional route has been a challenge and their translation into clinical applications has been limited. Topical and transdermal delivery of polymeric nanoparticles will act as a novel therapeutic approach for promising delivery of polyphenols. In this review, we have evaluated the existing scientific literature and summarized the potential use of polymeric nanoparticles as a carrier for polyphenolic compounds for delivery via topical and transdermal routes for the treatment of skin cancers such as melanoma.

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 220
Author(s):  
Ana Mariel Torres-Contreras ◽  
Antoni Garcia-Baeza ◽  
Heriberto Rafael Vidal-Limon ◽  
Isaias Balderas-Renteria ◽  
Mónica A Ramírez-Cabrera ◽  
...  

Human skin works as a barrier against the adverse effects of environmental agents, including ultraviolet radiation (UVR). Exposure to UVR is associated with a variety of harmful effects on the skin, and it is one of the most common health concerns. Solar UVR constitutes the major etiological factor in the development of cutaneous malignancy. However, more than 90% of skin cancer cases could be avoided with appropriate preventive measures such as regular sunscreen use. Plants, constantly irradiated by sunlight, are able to synthesize specialized molecules to fight against UVR damage. Phenolic compounds, alkaloids and carotenoids constitute the major plant secondary metabolism compounds with relevant UVR protection activities. Hence, plants are an important source of molecules used to avoid UVR damage, reduce photoaging and prevent skin cancers and related illnesses. Due to its significance, we reviewed the main plant secondary metabolites related to UVR protection and its reported mechanisms. In addition, we summarized the research in Mexican plants related to UV protection. We presented the most studied Mexican plants and the photoprotective molecules found in them. Additionally, we analyzed the studies conducted to elucidate the mechanism of photoprotection of those molecules and their potential use as ingredients in sunscreen formulas.


2020 ◽  
Vol 26 (41) ◽  
pp. 7520-7532 ◽  
Author(s):  
Ana Rita Dias ◽  
João Costa-Rodrigues ◽  
Cátia Teixeira ◽  
Cristina Prudêncio ◽  
Paula Gomes ◽  
...  

: The unique properties of ionic liquids make them quite appealing for diverse applications, from “green” solvents (1st generation ionic liquids) to finely tuned materials (2nd generation ionic liquids). A decade ago, a 3rd generation of ionic liquids emerged which is focused on their prospective clinical applications, either as drugs per se or as adjuvants in drug formulations. In recent years, research focused on the use of ionic liquids for topical drug delivery has been increasing and holds great promise towards clinical application against skin cancers. This article highlights the growing relevance of ionic liquids in medicinal chemistry and pharmaceutical technology, which is opening new windows of opportunity.


2021 ◽  
Vol 22 (6) ◽  
pp. 2855
Author(s):  
Anna Janeczko ◽  
Jana Oklestkova ◽  
Danuše Tarkowská ◽  
Barbara Drygaś

Ecdysteroids (ECs) are steroid hormones originally found in the animal kingdom where they function as insect molting hormones. Interestingly, a relatively high number of these substances can also be formed in plant cells. Moreover, ECs have certain regulatory effects on plant physiology, but their role in plants still requires further study. One of the main aims of the present study was to verify a hypothesis that fenarimol, an inhibitor of the biosynthesis of ECs in the animal kingdom, also affects the content of endogenous ECs in plants using winter wheat Triticum aestivum L. as a model plant. The levels of endogenous ECs in winter wheat, including the estimation of their changes during a course of different temperature treatments, have been determined using a sensitive analytical method based on UHPLC-MS/MS. Under our experimental conditions, four substances of EC character were detected in the tissue of interest in amounts ranging from less than 1 to over 200 pg·g−1 FW: 20-hydroxyecdysone, polypodine B, turkesterone, and isovitexirone. Among them, turkesterone was observed to be the most abundant EC and accumulated mainly in the crowns and leaves of wheat. Importantly, the level of ECs was observed to be dependent on the age of the plants, as well as on growth conditions (especially temperature). Fenarimol, an inhibitor of a cytochrome P450 monooxygenase, was shown to significantly decrease the level of naturally occurring ECs in experimental plants, which may indicate its potential use in studies related to the biosynthesis and physiological function of these substances in plants.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 189
Author(s):  
Sana Ben-Othman ◽  
Hedi Kaldmäe ◽  
Reelika Rätsep ◽  
Uko Bleive ◽  
Alar Aluvee ◽  
...  

Polyphenolic compounds, plant secondary metabolites essential for plant survival, are known for their high antioxidant and anti-inflammatory activity. In addition, several polyphenols, such as phloretin, also have potential antiviral effects, making these compounds potential ingredients of biofunctional foods. A promising source for the extraction of phloretin is a by-product of apple production—apple tree leaves. Focusing on green technologies, the first aim of the present study was to optimize the direct ultrasound-assisted extraction conditions to gain the maximum yield of phloretin from air-dried apple leaves. For the optimization of process parameters, we applied the response surface method with Box–Behnken design. The optimal extraction conditions were extraction time 14.4 min, sonication amplitude 10% and 10 g of sample per 100 mL solvent (70% ethanol, w/w). Using these conditions, we assessed the content of individual and total polyphenolic compounds along with antioxidant activity in the leaves of different autumn and winter apple cultivars grown in Estonia. The analyses were carried out with chromatographic (HPLC-DAD-MS/MS) and spectrophotometric methods. The phloretin concentration ranged from 292 to 726 µg/g and antioxidant activity from 6.06 to 11.42 mg GA eq./g, these being the highest in the local winter cultivars ‘Paide taliõun’ and ‘Tellissaare’, respectively.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 451
Author(s):  
Beata Szulc-Musioł ◽  
Beata Sarecka-Hujar

In recent years, polyphenols have been extensively studied due to their antioxidant, anticancer, and anti-inflammatory properties. It has been shown that anthocyanins, flavonols, and flavan-3-ols play an important role in the prevention of bacterial infections, as well as vascular or skin diseases. Particularly, resveratrol, as a multi-potent agent, may prevent or mitigate the effects of oxidative stress. As the largest organ of the human body, skin is an extremely desirable target for the possible delivery of active substances. The transdermal route of administration of active compounds shows many advantages, including avoidance of gastrointestinal irritation and the first-pass effect. Moreover, it is non-invasive and can be self-administered. However, this delivery is limited, mainly due to the need to overpassing the stratum corneum, the possible decomposition of the substances in contact with the skin surface or in the deeper layers thereof. In addition, using resveratrol for topical and transdermal delivery faces the problems of its low solubility and poor stability. To overcome this, novel systems of delivery are being developed for the effective transport of resveratrol across the skin. Carriers in the micro and nano size were demonstrated to be more efficient for safe and faster topical and transdermal delivery of active substances. The present review aimed to discuss the role of resveratrol in the treatment of skin abnormalities with a special emphasis on technologies enhancing transdermal delivery of resveratrol.


2018 ◽  
Vol 20 ◽  
Author(s):  
Ana Barbosa ◽  
Ana Peixoto ◽  
Pedro Pinto ◽  
Manuela Pinheiro ◽  
Manuel R. Teixeira

AbstractCirculating cell-free DNA (cfDNA) consists of small fragments of DNA that circulate freely in the bloodstream. In cancer patients, a fraction of cfDNA is derived from tumour cells, therefore containing the same genetic and epigenetic alterations, and is termed circulating cell-free tumour DNA. The potential use of cfDNA, the so-called ‘liquid biopsy’, as a non-invasive cancer biomarker has recently received a lot of attention. The present review will focus on studies concerning the potential clinical applications of cfDNA in ovarian cancer patients.


2021 ◽  
Author(s):  
Jesus Gomez Rossi ◽  
Ben Feldberg ◽  
Joachim Krois ◽  
Falk Schwendicke

BACKGROUND Research and Development (R&D) of Artificial Intelligence (AI) in medicine involve clinical, technical and economic aspects. Better understanding the relationship between these dimensions seems necessary to coordinate efforts of R&D among stakeholders. OBJECTIVE To assess systematically existing literature on the cost-effectiveness of Artificial Intelligence (AI) from a clinical, technical and economic perspective. METHODS A systematic literature review was conducted to study the cost-effectiveness of AI solutions and summarised within a scoping framework of health policy analysis developed to study clinical, technical and economic dimensions. RESULTS Of the 4820 eligible studies, 13 met the inclusion criteria. Internal medicine and emergency medicine were the most studied clinical disciplines. Technical R&D aspects have not been uniformly disclosed in the studies we analysed. Monetisation aspects such as payment models assumed have not been reported in the majority of cases. CONCLUSIONS Existing scientific literature on the cost-effectiveness of AI currently does not allow to draw conclusive recommendations. Further research and improved reporting on technical and economic aspects seem necessary to assess potential use-cases of this technology, as well as to secure reproducibility of results. CLINICALTRIAL Not applicable


Toxins ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 243 ◽  
Author(s):  
Svetlana V. Malysheva ◽  
Patrick P. J. Mulder ◽  
Julien Masquelier

Cardiac glycosides (CGs) are naturally occurring plant secondary metabolites that can be toxic to humans and animals. The aim of this work was to develop a targeted analytical method utilizing liquid chromatography—tandem mass spectrometry (LC-MS/MS) for quantification of these plant toxins in a herbal-based food and human urine. The method included oleandrin, digoxin, digitoxin, convallatoxin, and ouabain. Samples of culinary herbs were extracted with acetonitrile and cleaned using Oasis® MAX solid-phase extraction (SPE), while samples of urine were diluted with acidified water and purified on Oasis® HLB SPE cartridges. Limits of quantification were in the range of 1.5–15 ng/g for herbs and 0.025–1 ng/mL for urine. The mean recovery of the method complied with the acceptable range of 70–120% for most CGs, and relative standard deviations were at maximum 14% and 19% for repeatability and reproducibility, respectively. Method linearity was good with calculated R² values above 0.997. The expanded measurement uncertainty was estimated to be in the range of 7–37%. The LC-MS/MS method was used to examine 65 samples of culinary herbs and herb and spice mixtures collected in Belgium, from supermarkets and local stores. The samples were found to be free from the analyzed CGs.


2009 ◽  
Vol 71-73 ◽  
pp. 709-712 ◽  
Author(s):  
Renata Matlakowska ◽  
Aleksandra Sklodowska

Indigenous microorganisms isolated from organic-rich copper-bearing black shale from the Fore-Sudetic Monocline were able to transform naturally occurring metalloporphyrins in laboratory cultures. It was also demonstrated that these bacteria can utilize synthetic metalloporphyrins as the sole energy and carbon source. The first step in metalloporphyrin biotransformation was identified as the highly effective bioaccumulation of these compounds in bacterial cells. The ability of both living and dead cells to biosorb metalloporphyrins was also confirmed. Besides contributing to the important biogeochemical role of these microorganisms in the environment, their biotransformation activities are of potential use in the bioremediation of copper tailings as well as in the recovery of metals from organic-rich black shale ore, which is not possible using traditional hydrometallurgical procedures.


2012 ◽  
Vol 7 (7) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Natalia K. Utkina ◽  
Natalia D. Pokhilo

Antioxidant activities of minor pigments of sea urchins (1–5) and synthetic naphthazarins (7–13) were evaluated and compared with echinochrome A (6) using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) scavenging assays. Structure-activity relationships showed that the antioxidant activities of the tested compounds depended on the number and positions of hydroxyl groups. Compounds bearing 3 or 2 hydroxyl groups on a naphthazarin core (5,8-dihydroxy-1,4-naphthoquinone) were the most active in both assays. Echinochrome A (6) (IC50 7.0 μM) and its monomethyl ethers 7 (IC50 15.0 μM) and 8 (IC50 15.0 μM) displayed stronger activities than Trolox (IC50 16.0 μM) in the DPPH and ABTS assays (TE = 3.41, 2.35, and 2.35 mM, respectively). Compounds with either one or without hydroxyl groups on a naphthazarin core displayed activities significantly lower than Trolox in both assays. These results suggest that hydroxylated naphthazarin pigments of sea urchins have a potential use as natural antioxidants.


Sign in / Sign up

Export Citation Format

Share Document