An Update on the Synthesis and Applications of Bis(Naphthoquinones): An Important Class of Molecules against Infectious Diseases and Other Conditions

Author(s):  
Luana da S. M. Forezi ◽  
Acácio S. de Souza ◽  
Carolina G. S. Lima ◽  
Amanda A. Borges ◽  
Patricia G. Ferreira ◽  
...  

: Naphthoquinones are important molecules belonging to the general class of quinones, and many of these compounds have become drugs that are in the pharmaceutical market for the treatment of several diseases. A special subclass of compounds is that of the bis(naphthoquinones), which have two linked naphthoquinone units. In the last few years, several synthetic approaches toward such valuable compounds have been described, as well as their evaluation against numerous important biological targets. In this review, we provide a thorough discussion on the various synthetic methods reported for the synthesis of bis(naphthoquinone) analogues, also highlighting the biological activities of these substances.

2019 ◽  
Vol 16 (3) ◽  
pp. 342-368 ◽  
Author(s):  
Ramandeep Kaur ◽  
Yagyesh Kapoor ◽  
Sundeep K. Manjal ◽  
Ravindra K. Rawal ◽  
Kapil Kumar

The furo [2,3-b] indoline ring system is one of the most important structural units in various natural products. It has been known to have inherent biological activities and is utilized as a synthetic target for a number of natural compounds; therefore, this has contributed to a great demand for the growth of synthetic methods for this ring system. Most important compounds with furoindoline ring system are physovenine, madindoline A and B and makomotindoline etc. These compounds are well known to exhibit biological activity against different diseases such as glaucoma, cancer, cachexia, Castleman’s disease, rheumatoid arthritis, etc. The current article focuses on various synthetic approaches for furoindoline containing compounds and essential furoindoline moiety, such as oxindole-5-O-tetrahydropyranyl ether route etc., and various other diastereoand enantio- controlled approach in a very concise way.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2417 ◽  
Author(s):  
Jong-Wha Jung ◽  
Nam-Jung Kim ◽  
Hwayoung Yun ◽  
Young Han

4-Arylcoumarins (4-aryl-2H-1-benzopyran-2-one), also known as neoflavones, comprise a minor subclass of naturally occurring flavonoids. Because of their broad-spectrum biological activities, arylcoumarins have been attracting the attention of the organic and medicinal chemistry communities, and are considered as an important privileged scaffold. Since the development of Pechmann condensation, a classical acid-catalyzed condensation between phenol and β-keto-carboxylic acid, several versatile and efficient synthetic approaches for 4-arylcoumarins have been reported. This review summarizes recent advances in the synthesis of the 4-arylcoumarin scaffold by classifying them based on the final bond-formation type. In particular, synthetic methods executed under mild and highly efficient conditions, such as solvent-free reactions and transition metal catalysis, are highlighted.


2021 ◽  
Vol 18 ◽  
Author(s):  
Isabela A. Graciano ◽  
Alcione S. de Carvalho ◽  
Fernando de Carvalho da Silva ◽  
Vitor F. Ferreira

Background: Malaria is a disease causing millions of victims every year and requires new drugs, often due to parasitic strain mutations. Thus, the search for new molecules that possess antimalarial activity is constant and extremely important. However, the potential that an antimalarial drug possesses cannot be ignored, and molecular hybridization is a good strategy to design new chemical entities. Objective: This review article aims to emphasize recent advances in the biological activities of new 1,2,3-triazole- and quinoline-based hybrids and their place in the development of new biologically active substances. More specifically, it intends to present the synthetic methods that have been utilized for the syntheses of hybrid 1,2,3-triazoles with quinoline nuclei. Method: We have comprehensively and critically discussed all the information available in the literature regarding 1,2,3-triazole- and quinoline-based hybrids with potent antiplasmodial activity. Results: The quinoline nucleus has already been proven to lead to new chemical entities in the pharmaceutical market, such as drugs for the treatment of malaria and other diseases. The same can be said about the 1,2,3-triazole heterocycle, which has been shown to be a beneficial scaffold for the construction of new drugs with several activities. However, only a few triazoles have entered the pharmaceutical market as drugs. Conclusion: Many studies have been conducted to develop new substances that may circumvent the resistance developed by the parasite that causes malaria, thereby improving the therapy currently used.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2030 ◽  
Author(s):  
Ana I. Koleva ◽  
Nevena I. Petkova-Yankova ◽  
Rositca D. Nikolova

Coumarins are an important class of natural heterocyclic compounds that have attracted considerable synthetic and pharmacological interest due to their various biological activities. This review emphasizes on the synthetic methods for the preparation of dialkyl 2-oxo-2H-1-benzo- pyran-3-phosphonates and alkyl 1,2-benzoxaphosphorin-3-carboxylates. Their chemical properties as acceptors in conjugate addition reactions, [2+2] and [3+2] cycloaddition reactions are discussed.


2020 ◽  
Vol 27 ◽  
Author(s):  
Sunil Kumar ◽  
Yu-Chia Chang ◽  
Kuei-Hung Lai ◽  
Tsong-Long Hwang

Background: Resveratrol, a natural polyphenol product, is used in plant defense from fungal and microbial aggression. It is found naturally, especially in plants such as grapes, peanuts, and berries. It has the highest concentrations in blueberries, mulberries, blackberries, and the skin of red grapes. Resveratrol has various pharmacological properties such as anti-inflammatory, cytoprotective, and antineoplastic activities. Methods: We conducted a literature survey using standard tools such as Google, Reaxys, Scifinder, Scihub, and patent Espacenet to compile the biosynthetic pathways, all organic synthetic methods, and biological activities reported for resveratrol till date. Results: More than one hundred research articles and patents were referred to write this review. About twenty-five of them are related to chemical synthesis, and the rests are about the source, pharmacological activity, and other properties of resveratrol. This study reveals that many common pathways are involved in various pharmacological activities, which can be useful for treating various diseases based on the pathways involved. Reactions such as Pfitzner-Moffatt oxidation, WittigHorner condensation, Mizoroki–Heck, Perkin, Wittig, etc. have been used in resveratrol synthesis. A structure-activity relationship was also established based on its analogs and derivatives. Conclusion: This review examined and reported all the published biological activities and chemical syntheses of resveratrol apart from the biosynthetic pathway. Due to its valuable biological activities, various synthetic approaches have been reported till date. The reported synthetic operations are suitable for large-scale industrial production. Moreover, these comprehensive synthetic procedures could be utilized in the preparation of stilbenes and other related compounds in future endeavors.


2020 ◽  
Vol 17 ◽  
Author(s):  
Nitin Kumar ◽  
Niranjan Kaushik ◽  
Shiv Kumar ◽  
Vikas Sharma

: Quinoxaline is a versatile heterocyclic moiety that posses almost all types of biological activities. Present work is a sincere attempt to review synthetic investigations of quinoxaline. A wide plethora of literature is available possessing different synthetic methods utilized for the synthesis of quinoxaline based scaffolds. The present review focuses on the various synthetic approaches of quinoxaline derivatives, which includes a summary of the advancement made over the past years in the synthesis of quinoxaline nucleus and its derivatives. Some of these methods are mentioned in the review article associated with industrial applicability.


2020 ◽  
Vol 24 (22) ◽  
pp. 2665-2693
Author(s):  
Dipayan Mondal ◽  
Pankaj Lal Kalar ◽  
Shivam Kori ◽  
Shovanlal Gayen ◽  
Kalpataru Das

Indole moiety is often found in different classes of pharmaceutically active molecules having various biological activities including anticancer, anti-viral, anti-psychotic, antihypertensive, anti-migraine, anti-arthritis and analgesic activities. Due to enormous applications of indole derivatives in pharmaceutical chemistry, a number of conventional synthetic methods as well as green methodology have been developed for their synthesis. Green methodology has many advantages including high yields, short reaction time, and inexpensive reagents, highly efficient and environmentally benign over conventional methods. Currently, the researchers in academia as well as in pharmaceutical industries have been developing various methods for the chemical synthesis of indole based compounds via green approaches to overcome the drawbacks of conventional methods. This review reflects the last ten years developments of the various greener methods for the synthesis of indole derivatives by using microwave, ionic liquids, water, ultrasound, nanocatalyst, green catalyst, multicomponent reaction and solvent-free reactions etc. (please see the scheme below). Furthermore, the applications of green chemistry towards developments of indole containing pharmaceuticals and their biological studies have been represented in this review.


2019 ◽  
Vol 23 (8) ◽  
pp. 860-900 ◽  
Author(s):  
Chander P. Kaushik ◽  
Jyoti Sangwan ◽  
Raj Luxmi ◽  
Krishan Kumar ◽  
Ashima Pahwa

N-Heterocyclic compounds like 1,2,3-triazoles serve as a key scaffolds among organic compounds having diverse applications in the field of drug discovery, bioconjugation, material science, liquid crystals, pharmaceutical chemistry and solid phase organic synthesis. Various drugs containing 1,2,3-triazole ring which are commonly available in market includes Rufinamide, Cefatrizine, Tazobactam etc., Stability to acidic/basic hydrolysis along with significant dipole moment support triazole moiety for appreciable participation in hydrogen bonding and dipole-dipole interactions with biological targets. Huisgen 1,3-dipolar azide-alkyne cycloaddition culminate into a mixture of 1,4 and 1,5- disubstituted 1,2,3-triazoles. In 2001, Sharpless and Meldal came across with a copper(I) catalyzed regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles by cycloaddition between azides and terminal alkynes. This azide-alkyne cycloaddition has been labelled as a one of the important key click reaction. Click synthesis describes chemical reactions that are simple to perform, gives high selectivity, wide in scope, fast reaction rate and high yields. Click reactions are not single specific reaction, but serve as a pathway for construction of simple to complex molecules from a variety of starting materials. In the last few decades, 1,2,3-triazoles attracted attention of researchers all over the world because of their broad spectrum of biological activities. Keeping in view the biological importance of 1,2,3-triazole, in this review we focus on the various synthetic routes for the syntheisis of 1,4-disubstituted 1,2,3-triazoles. This review involves various synthetic protocols which involves copper and non-copper catalysts, different solvents as well as substrates. It will boost synthetic chemists to explore new pathway for the development of newer biologically active 1,2,3-triazoles.


2020 ◽  
Vol 16 ◽  
Author(s):  
Vitor F. Ferreira ◽  
Alcione S. de Carvalho ◽  
Patricia G. Ferreira ◽  
Carolina G. S. Lima ◽  
Fernando de C. da Silva

Background: Several quinones are on the pharmaceutical market as drugs for the treatment of several diseases. Objective: The aim of this review was to provide an overview on the quinones that have become drugs for several therapeutic applications. Method: We have comprehensively and critically discussed all the information available in the literature about quinonebased drugs. Results: In this review, the various aspects of the chemistry and biochemistry of these drugs are highlighted, including their repositioning, drug combination and their new uses. Conclusion: The number of studies related to quinone drugs for different pharmaceutical uses shows that the interest in new applications still increasing in recent years.


Author(s):  
Prasad Dandawate ◽  
Khursheed Ahmed ◽  
Subhash Padhye ◽  
Aamir Ahmad ◽  
Bernhard Biersack

Background: Chalcones are structurally simple compounds that are easily accessible by synthetic methods. Heterocyclic chalcones have gained the interest among scientists due to their diverse biological activities. The anti-tumor activities of heterocyclic chalcones are especially remarkable and the growing number of publications dealing with this topic warrants an up-to-date compilation. Methods: Search for antitumor active heterocyclic chalcones was carried out using Pubmed and Scifinder as common web-based literature searching tools. Pertinent and current literature is covered from 2015/2016 to 2019. Chemical structures, biological activities and modes of action of anti-tumor active heterocyclic chalcones are summarized. Results: Simply prepared chalcones have emerged over the last years with promising antitumor activities. Among them is a considerable number of tubulin polymerization inhibitors. But there are also new chalcones targeting special enzymes such as histone deacetylases or with DNA-binding properties. Conclusion: This review provides a summary of recent heterocyclic chalcone derivatives with distinct anti-tumor activities.


Sign in / Sign up

Export Citation Format

Share Document