A Mini-Review on Nano Technology in the Tumour Targeting Strategies: Drug Delivery to Cancer Cells

2020 ◽  
Vol 20 (17) ◽  
pp. 2012-2024
Author(s):  
Loveleen Kaur ◽  
Harvinder S. Sohal ◽  
Manvinder Kaur ◽  
Dharambeer S. Malhi ◽  
Sonali Garg

Background: Recently, the application of cancer nanotechnology-based drug delivery to cancer cells has arisen as an important method to resolve multiple molecular, biophysical, and biochemical obstacles, which the body is preparing to resist against the productive implementation of chemotherapeutic medications. Drug delivery technologies focused on nanoparticles, which have resolved some of the drawbacks of conventional chemotherapy as, decreased drug viscosity, chemo-resistance, precise malignity, limited medicative measures with low oral bioactivity. Due to their adjustable size and surface properties, the half-life period of a drug can be increased in the bloodstream. Objective: The aim of the current study is to collect and document the data available on the drug delivery system for anticancer drugs. The present study includes some of the drug carriers like liposomes, carbon dots, micelles, carbon nanotubes, magnetic nanoparticles, etc. Methods: To write this review, an exhaustive literature survey was carried out using relevant work published in various SCI, Scopus, and non-SCI indexed journals. The different search engines used to download the research/ review papers are Google search, PubMed, Science Direct, Google Scholar, Scientific Information Database and Research Gate, etc. Results: Nanotechnology offers better pharmacokinetics, reduces the systematic toxicities related to the chemotherapies and a better route of drug administration. In the analysis, we critically highlight recent studies on carcinoma-fighting nanotechnology. Conclusion: In the present study, different kinds of nano-based drug delivery systems have been discussed along with their characteristic features, the encapsulation of anticancer agents into different types of nanometresized vehicles and their general mechanism.

2021 ◽  
Vol 14 (4) ◽  
pp. 1839-1846
Author(s):  
Pradeepa Varadharajaperumal

The use of nanoparticles as drug carriers has been investigated, and it offers various benefits, including the controlled and targeted release of loaded or associated drugs, as well as enhanced drug bioavailability. They do, however, have certain disadvantages, such as in vivo toxicity, which affects all organs, including healthy ones, and overall disease treatment improvement, which might be undetectable or limited. Silver nanoparticles are being studied more and more due to their unique physical, chemical, and optical properties, which allow them to be used in a variety of applications, including drug delivery to specific targets in the body. Given the constraints of traditional cancer treatment, such as low bioavailability and the resulting usage of high doses that produce side effects, attempts to address these challenges are essential. In this work, Biocompatible Silver nanoparticles (AgNps) loaded with tamoxifen have been prepared using the gelation process. Tamoxifen-loaded green synthesized AgNps are reported to be amorphous. The phytochemicals present in the extract of Hemionitis arifolia leaf were responsible for the reduction of silver nitrate to AgNPs. The functional groups existing in the particles were identified with FT-IR analysis. XRD analysis state that the particles were crystalline in nature and arranged in quartzite crystal. Particle size and shape were illustrated from SEM analysis and revealed that the particles were amorphous in nature. UV-visible spectrophotometer showed the band around 440nm which was identified as “surface Plasmon resonance band”. The synthesized AgNps loaded with tamoxifen were significantly effective against Human breast cancer cells. The silver nanoparticle loaded with tamoxifen was found to be inducing apoptotic signals in the selected cells. It inhibits the breast cancer cells even at the lower concentration of AgNPs and TAM-AgNPs. Further apoptotic studies (AO/EtBr and DAPI) reveal that cell death is due to the fragmentation of nuclear material of the treated cells.


2019 ◽  
Vol 25 (34) ◽  
pp. 3608-3619 ◽  
Author(s):  
Uzma Arif ◽  
Sajjad Haider ◽  
Adnan Haider ◽  
Naeem Khan ◽  
Abdulaziz A. Alghyamah ◽  
...  

Background: Biocompatible polymers are gaining great interest in the field of biomedical applications. The term biocompatibility refers to the suitability of a polymer to body and body fluids exposure. Biocompatible polymers are both synthetic (man-made) and natural and aid in the close vicinity of a living system or work in intimacy with living cells. These are used to gauge, treat, boost, or substitute any tissue, organ or function of the body. A biocompatible polymer improves body functions without altering its normal functioning and triggering allergies or other side effects. It encompasses advances in tissue culture, tissue scaffolds, implantation, artificial grafts, wound fabrication, controlled drug delivery, bone filler material, etc. Objectives: This review provides an insight into the remarkable contribution made by some well-known biopolymers such as polylactic-co-glycolic acid, poly(ε-caprolactone) (PCL), polyLactic Acid, poly(3- hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), Chitosan and Cellulose in the therapeutic measure for many biomedical applications. Methods: : Various techniques and methods have made biopolymers more significant in the biomedical fields such as augmentation (replaced petroleum based polymers), film processing, injection modeling, blow molding techniques, controlled / implantable drug delivery devices, biological grafting, nano technology, tissue engineering etc. Results: The fore mentioned techniques and other advanced techniques have resulted in improved biocompatibility, nontoxicity, renewability, mild processing conditions, health condition, reduced immunological reactions and minimized side effects that would occur if synthetic polymers are used in a host cell. Conclusion: Biopolymers have brought effective and attainable targets in pharmaceutics and therapeutics. There are huge numbers of biopolymers reported in the literature that has been used effectively and extensively.


2020 ◽  
Vol 26 (42) ◽  
pp. 5488-5502 ◽  
Author(s):  
Yub Raj Neupane ◽  
Asiya Mahtab ◽  
Lubna Siddiqui ◽  
Archu Singh ◽  
Namrata Gautam ◽  
...  

Autoimmune diseases are collectively addressed as chronic conditions initiated by the loss of one’s immunological tolerance, where the body treats its own cells as foreigners or self-antigens. These hay-wired antibodies or immunologically capable cells lead to a variety of disorders like rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosus, multiple sclerosis and recently included neurodegenerative diseases like Alzheimer’s, Parkinsonism and testicular cancer triggered T-cells induced autoimmune response in testes and brain. Conventional treatments for autoimmune diseases possess several downsides due to unfavourable pharmacokinetic behaviour of drug, reflected by low bioavailability, rapid clearance, offsite toxicity, restricted targeting ability and poor therapeutic outcomes. Novel nanovesicular drug delivery systems including liposomes, niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes and biologically originated exosomes have proved to possess alluring prospects in supporting the combat against autoimmune diseases. These nanovesicles have revitalized available treatment modalities as they are biocompatible, biodegradable, less immunogenic and capable of carrying high drug payloads to deliver both hydrophilic as well as lipophilic drugs to specific sites via passive or active targeting. Due to their unique surface chemistry, they can be decorated with physiological or synthetic ligands to target specific receptors overexpressed in different autoimmune diseases and can even cross the blood-brain barrier. This review presents exhaustive yet concise information on the potential of various nanovesicular systems as drug carriers in improving the overall therapeutic efficiency of the dosage regimen for various autoimmune diseases. The role of endogenous exosomes as biomarkers in the diagnosis and prognosis of autoimmune diseases along with monitoring progress of treatment will also be highlighted.


2016 ◽  
Vol 17 (1-2) ◽  
Author(s):  
Julia Modrejewski ◽  
Johanna-Gabriela Walter ◽  
Imme Kretschmer ◽  
Evren Kemal ◽  
Mark Green ◽  
...  

AbstractThe purpose of this study was to develop a model system for targeted drug delivery. This system should enable targeted drug release at a certain tissue in the body. In conventional drug delivery systems, drugs are often delivered unspecifically resulting in unwarranted adverse effects. To circumvent this problem, there is an increasing demand for the development of intelligent drug delivery systems allowing a tissue-specific mode of delivery. Within this study, nanoparticles consisting of two biocompatible polymers are used. Because of their small size, nanoparticles are well-suited for effective drug delivery. The small size affects their movement through cell and tissue barriers. Their cellular uptake is easier when compared to larger drug delivery systems. Paclitaxel was encapsulated into the nanoparticles as a model drug, and to achieve specific targeting an aptamer directed against lung cancer cells was coupled to the nanoparticles surface. Nanoparticles were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), and nanotracking analysis (NTA). Also their surface charge was characterized from ζ-potential measurements. Their preparation was optimized and subsequently specificity of drug-loaded and aptamer-functionalized nanoparticles was investigated using lung cancer cells.


Author(s):  
Subham Jain N ◽  
Preeti S ◽  
Amit B Patil

Background: The nanotechnology which has vast growth in the research field and the outcome product of nanotechnology is nanoparticles. Quantum dots with a size range of 2-10nm represents a new form in nanotechnology materials. It has showed widespread attention in recent years in the field of science and its application in drug delivery. Quantum dots are semiconductor nanocrystals which possess interesting properties and characteristics such as unique optical properties, quantum confinement effect and emit fluorescence on excitation with a light source which makes them a potential candidate for nano-probes and for carriers for biological application. Objective: The objective of the article is to explain the role and application of Quantum dots in drug delivery and its future application in pharmaceutical science and research. This review focuses on drug delivery through Quantum dots and Quantum dots helping nanocarriers for drug delivery. The development of QD nano-carriers for drugs has become a hotspot in the fields of nano-drug research. The Quantum Dot labelled nano-carrier can able to deliver the drugs with fewer side effects and it can able to trace the drug location in the body. Results: The Fluorescent emission of Quantum dots is better than other organic dyes which leads to better drug delivery for cancer or acting as a tag for other drug carriers. Conclusion: Because of emission property of Quantum Dots, it can be said used with other drug carriers and later it can be traced with the help of Quantum Dots. Quantum dots can be said as smart Drug delivery.


2021 ◽  
Vol 22 (19) ◽  
pp. 10319
Author(s):  
Saman Sargazi ◽  
Mahwash Mukhtar ◽  
Abbas Rahdar ◽  
Mahmood Barani ◽  
Sadanad Pandey ◽  
...  

Nanotechnology has revolutionized novel drug delivery strategies through establishing nanoscale drug carriers, such as niosomes, liposomes, nanomicelles, dendrimers, polymeric micelles, and nanoparticles (NPs). Owing to their desirable cancer-targeting efficacy and controlled release, these nanotherapeutic modalities are broadly used in clinics to improve the efficacy of small-molecule inhibitors. Poly(ADP-ribose) polymerase (PARP) family members engage in various intracellular processes, including DNA repair, gene transcription, signal transduction, cell cycle regulation, cell division, and antioxidant response. PARP inhibitors are synthetic small-molecules that have emerged as one of the most successful innovative strategies for targeted therapy in cancer cells harboring mutations in DNA repair genes. Despite these advances, drug resistance and unwanted side effects are two significant drawbacks to using PARP inhibitors in the clinic. Recently, the development of practical nanotechnology-based drug delivery systems has tremendously improved the efficacy of PARP inhibitors. NPs can specifically accumulate in the leaky vasculature of the tumor and cancer cells and release the chemotherapeutic moiety in the tumor microenvironment. On the contrary, NPs are usually unable to permeate across the body’s normal organs and tissues; hence the toxicity is zero to none. NPs can modify the release of encapsulated drugs based on the composition of the coating substance. Delivering PARP inhibitors without modulation often leads to the toxic effect; therefore, a delivery vehicle is essential to encapsulate them. Various nanocarriers have been exploited to deliver PARP inhibitors in different cancers. Through this review, we hope to cast light on the most innovative advances in applying PARP inhibitors for therapeutic purposes.


2018 ◽  
Vol 8 (6) ◽  
pp. 268-271
Author(s):  
Kuilong Wang

Targeted drug delivery with nano-technology has been researched and identified as being efficient across many treatment conditions. This review assesses some of the existing research work and evidence practice in using nano-technology based drug carriers. Keywords: Nano-technology, drug delivery, nanoparticle formulation, nano-technology carriers, drug resistance


2017 ◽  
pp. 459-485
Author(s):  
Prabhakar Singh ◽  
Sudhakar Singh ◽  
Rajesh Kumar Kesharwani

In this pharma innovative world, there are more than 30 drug delivery systems. Today's due to lacking the target specificity, the present scenario about drug delivery is emphasizing towards targeted drug delivery systems. Erythrocytes are the most common type of blood cells travel thousands of miles from wide to narrow pathways to deliver oxygen, drugs and nutrient during their lifetime. Red blood cells have strong and targeted potential carrier capabilities for varieties of drugs. Drug-loaded carrier erythrocytes or resealed erythrocytes are promising for various passive and active targeting. Resealed erythrocyte have advantage over several drug carrier models like biocompatibility, biodegradability without toxic products, inert intracellular environment, entrapping potential for a variety of chemicals, protection of the organism against toxic effects of the drug, able to circulate throughout the body, ideal zero-order drug-release kinetics, no undesired immune response against encapsulated drug etc. Resealed erythrocytes are rapidly taken up by macrophages of the Reticuloendothelial System (RES) of the liver, lung, and spleen of the body and hence drugs also. Resealed erythrocytes method of drugs delivery is secure and effective for drugs targeting specially for a longer period of time. This chapter will explain the different method of drug loading for resealed erythrocytes, their characterization, and applications in various therapies and associated health benefits.


Author(s):  
Masaaki Tamagawa ◽  
Ichiro Yamanoi

This paper describes the trial of making microcapsules including a bubble for shock wave drug delivery systems and evaluation of their mechanical properties. We have proposed drug delivery systems (DDS) using shock waves in order to apply micro/nano technology in the fields of biomedical engineering. In this system, a microcapsule including a gas bubble is flown in the blood vessel, and finally broken by shock induced microjet, then drug is reached to the affected part in the body as same as traditional DDS. In this paper, the mechanism for deformation and disintegration of capsules in our previous works is reviewed, and the trials of making special microcapsules are discussed. To determine Young’s modulus of capsule membrane mentioned above, the membrane is deformed by the aspiration device and the deformation is compared with computational result by FEM.


RSC Advances ◽  
2017 ◽  
Vol 7 (1) ◽  
pp. 248-255 ◽  
Author(s):  
Huajian Chen ◽  
Yan Ma ◽  
Xianwen Wang ◽  
Xiaoyi Wu ◽  
Zhengbao Zha

Multifunctional PEGylated PB-DOX NPs with a lipid-PEG shell were developed as a gram-scale manner and used as novel pH-responsive drug delivery vehicles for combined photothermal-chemo treatment of cancer cells with high efficacy.


Sign in / Sign up

Export Citation Format

Share Document