scholarly journals Analysis Fatty Acids Profile in Tabanus bivittatus Mats with Gas Chromatography-Mass Spectrometry

2015 ◽  
Vol 9 (1) ◽  
pp. 113-118
Author(s):  
Wang Yanhua ◽  
Wu Fuhua ◽  
Guo Zhaohan ◽  
Peng Mingxing ◽  
Xia Min ◽  
...  

Tabanus bivittatus Mats., a traditional Chinese medicine, is commonly used for cardiovascular disorders treatment including atherosclerosis. There have been only a few researches on its chemical components, and no detailed report has appeared on its fatty acids. To develop a simple and effective method for the extraction of total fatty acids from Tabanus bivittatus Mats., the Soxhlet extraction (SE) condition was optimized with response surface methodology. The fatty acid composition of the extract were determined by GC-MS with previous derivatization to fatty acid methyl esters (FAMEs). The major fatty acids in Tabanus bivittatus Mats. were oleic acid, palmitic acid, linoleic acid, palmitoleic acid, and stearic acid, and the unsaturated fatty acids occupy 63.9% of the total fatty acids.

Proceedings ◽  
2020 ◽  
Vol 51 (1) ◽  
pp. 6
Author(s):  
Aneta Sienkiewicz ◽  
Alicja Piotrowska-Niczyporuk ◽  
Andrzej Bajguz

Due to the increasing awareness of the depletion of fossil fuel resources and environmental issues, biodiesel as alternative fuel has become more and more attractive in the recent years. In this research, the characterization of herbal industry wastes as a potential feedstock for biodiesel production was carried out. There results of analytical identification of the fatty acid methyl esters (FAME) obtained in the transesterification reaction are presented. The reaction conditions were optimized, considering hexane ratio and catalyst concentration (methanol and KOH) for both steps. The FAME were extracted from the herbal samples by ultrasound-assisted extraction and subsequently were identified by gas chromatography-mass spectrometry (GC-MS) using single ion monitoring (SIM) method. Additionally, the selected properties of some bioesters were analyzed. This study determined the compounds which are ideal for fuel production. The unsaturated fatty acids were found in higher amounts than saturated fatty acids. Linoleic acid (C18:2n6c) was the major unsaturated fatty acid in herbal wastes, while palmitic acid (16:0) was the major saturated fatty acid. The application of the optimized method also revealed differences in the physical and chemical properties of isolated FAME mixtures compared to conventional diesel fuel. In this research work, for the first time, the possibilities of using the herbal industry wastes as a potential feedstock for biodiesel production are assessed.


Author(s):  
E-Ming Rau ◽  
Inga Marie Aasen ◽  
Helga Ertesvåg

Abstract Thraustochytrids are oleaginous marine eukaryotic microbes currently used to produce the essential omega-3 fatty acid docosahexaenoic acid (DHA, C22:6 n-3). To improve the production of this essential fatty acid by strain engineering, it is important to deeply understand how thraustochytrids synthesize fatty acids. While DHA is synthesized by a dedicated enzyme complex, other fatty acids are probably synthesized by the fatty acid synthase, followed by desaturases and elongases. Which unsaturated fatty acids are produced differs between different thraustochytrid genera and species; for example, Aurantiochytrium sp. T66, but not Aurantiochytrium limacinum SR21, synthesizes palmitoleic acid (C16:1 n-7) and vaccenic acid (C18:1 n-7). How strain T66 can produce these fatty acids has not been known, because BLAST analyses suggest that strain T66 does not encode any Δ9-desaturase-like enzyme. However, it does encode one Δ12-desaturase-like enzyme. In this study, the latter enzyme was expressed in A. limacinum SR21, and both C16:1 n-7 and C18:1 n-7 could be detected in the transgenic cells. Our results show that this desaturase, annotated T66Des9, is a Δ9-desaturase accepting C16:0 as a substrate. Phylogenetic studies indicate that the corresponding gene probably has evolved from a Δ12-desaturase-encoding gene. This possibility has not been reported earlier and is important to consider when one tries to deduce the potential a given organism has for producing unsaturated fatty acids based on its genome sequence alone. Key points • In thraustochytrids, automatic gene annotation does not always explain the fatty acids produced. • T66Des9 is shown to synthesize palmitoleic acid (C16:1 n-7). • T66des9 has probably evolved from Δ12-desaturase-encoding genes.


2021 ◽  
Vol 51 (2) ◽  
pp. 262-270
Author(s):  
I.M. Boldea ◽  
C. Dragomir ◽  
M.A. Gras ◽  
M. Ropotă

The objective of this research was to assess the effects of including oil-rich feedstuffs in diets for lactating goats on the fatty acid (FA) profile of their milk. Thirty-six Murciano-Granadina goats were randomly assigned to three treatment groups, namely a control diet (CTRL), a diet based on whole rapeseed (RS), and a diet based on pumpkin seed cake (PSC). The diets were composed of 1 kg hay (70 % Italian ryegrass, 30% alfalfa) and 1.24 kg concentrate, and were formulated to be isoenergetic and isonitrogenous. Milk yield and its contents of protein, fat and lactose did not differ significantly among the groups. However, including oil-rich feeds in the diet altered the fatty acid profile of the milk significantly, decreasing its saturated fatty acid (SFA) content and increasing its content of unsaturated fatty acids (UFAs). Effects on polyunsaturated fatty acids (PUFAs), conjugated linoleic acid (CLA), and the n-6 to n-3 ratio depended on the source of dietary lipids. The PSC augmented diet increased the relative amount of PUFAs and fatty acid methyl esters (FAME) in milk (+25 %) significantly In comparison with CTRL, whereas the RS diet produced a limited and statistically insignificant increase (+7.5%). The concentration of CLA was higher in milk from does fed the PSC diet, whereas the n-6 to n-3 ratio was lower in milk from does fed RS. These preliminary results form the basis for developing premium dairy products that are enriched in fatty acids that are more favourable for human health.


2021 ◽  
Vol 48 (2) ◽  
Author(s):  
Refka Dhouibi ◽  
◽  
Hanen Oueslati ◽  
Senda Bahri ◽  
Khaled Jabou ◽  
...  

Almonds (Prunus amygdalus) are a rich source of many essential nutrients. However, there is a lack of enough information on almond varieties' biochemical composition, especially at the germination stage. Therefore, this study was conducted to determine the chemical components of the germinating Tunisian almonds. The study included determining the content of oils, proteins, fatty acids, and triglycerides during germination. Results indicated that the oleaginous seeds are rich in oil (55 to 65% of the dry mass) and crude protein (21.825 mg/mL). The dominant polyunsaturated fatty acids are oleic and linoleic acids which represent 64.53% and 24.38%, respectively, while palmitic acid is the most dominant saturated fatty acid with 7.65% of the total fatty acids. Also, the primary molecular types of triglycerides detected by L.C. analysis are triolein (32.3%) and dioleolinolein (24.0%), followed by palmitodiolein (12.5%) and oleodilinolein (12.6%.). The physico-chemical properties study revealed that almond oil remains stable, thus preserving its quality and nutritional value, even during transition from dormancy to germination. On the other hand, we also detected the presence of a lipolytic activity which is maximum on the 3rd day of germination (4.66 mUI). Our results indicate that almond oil plays an important role in human nutrition due to the presence of unsaturated fatty acids, and it is more stable than other oils.


2020 ◽  
Vol 10 (5) ◽  
pp. 1589 ◽  
Author(s):  
Lacrimioara Senila ◽  
Emilia Neag ◽  
Oana Cadar ◽  
Melinda Haydee Kovacs ◽  
Anca Becze ◽  
...  

The objective of this study was to determine the chemical composition of five different food seeds (sunflower, poppy, hemp, flax and sesame) regarding fatty acid, mineral (Fe, Cu, Zn, Na, Mg, K, Ca, Al) and protein content. In addition, the total antioxidant capacity of the seeds was evaluated using the photochemiluminescent assay. The food seeds were subjected to lipid extraction and converted into fatty acid methyl esters before the gas chromatography analysis. In all food seeds, the saturated (SFAs), monounsaturated (MUFAs) and polyunsaturated fatty acids (PUFAs) were identified, respectively. PUFAs were the most abundant fatty acids (61.2% ± 0.07% and 84.8% ± 0.08% of total fatty acids), with the highest content in flax and hemp seed oil. Also, high amounts of omega-3 from PUFAs were determined in flax and hempseed oil. Based on the obtained results the sunflower, sesame and poppy seeds are good sources of omega-6, while flax and hemp seeds are good sources of omega-3. All samples are rich in minerals (Na, K, Ca, Mg) and have more than 20% protein content.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Trismawati Trismawati ◽  
I. N. G. Wardana ◽  
Nurkholis Hamidi ◽  
Mega Nur Sasongko

Surfactants are essential in the pulp recovery process for the removal of ink on paper to be recycled. In order to create a “green” surfactant, seed oil was extracted from Morinda citrifolia L. by Soxhlet extraction for 4–8 h and its composition evaluated by gas chromatography-mass spectrometry (GC-MS). The total ion chromatogram (TIC) of fatty acids of Morinda citrifolia L. (FAMC) indicated that extraction yields the largest amount of unsaturated fatty acids (UFA), specifically C19H34O2 and C21H38O2, at 6 h. All FAMC fractions were evaluated for their suitability as a surfactant for deinking flotation. FAMC isolated after 6 h of extraction yields fatty acids that are the most suitable surfactants, as the fraction consists of mostly unsaturated fatty acids that show good interactions with the structure of common ink molecules. Our results show that the performance of the FAMC taken after 6 h of extraction approaches that of a synthetic surfactant (SS). The appropriate viscous force for deinking flotation was found to be 1.5–2.0 × 10−4 mg/mm s2 when the synthetic surfactant is used compared to 1.0–1.5 × 10−4 mg/mm s2 for FAMC. The higher intermolecular bonding strength in the synthetic surfactant-ink particle system requires higher viscous force.


2018 ◽  
Vol 4 (2) ◽  
pp. 135-142 ◽  
Author(s):  
I. Biancarosa ◽  
N.S. Liland ◽  
N. Day ◽  
I. Belghit ◽  
H. Amlund ◽  
...  

Two species of seaweed flies, Coelopa frigida and Coelopa pilipes, were reared in the laboratory and their larvae were sampled for composition of amino acids, fatty acids and elements. The larvae were grown on two different species of seaweed, Laminaria digitata and Fucus serratus. The aim was to gain knowledge on the influence of feeding media on the growth and composition of the larvae. F. serratus was more nutrient-dense than L. digitata, being richer in both protein and lipids, and thus led to ~70% higher larvae growth. The larvae grown on F. serratus also had higher lipid and protein content than the larvae grown on L. digitata; F. serratus-grown larvae had ~8-9% protein and ~18% lipid (total fatty acids) (both values of dry matter), while the larvae grown on L. digitata had only ~7.5% protein and ~13% lipids. All seaweed flies had a similar and balanced amino acid composition, suitable for animal and human nutrition. The fatty acid composition was not highly affected by either insect species or feeding media, with all groups containing high concentrations of the monounsaturated fatty acid, palmitoleic acid (16:1n-7). The larvae also contained some fatty acids characteristic of marine environments, like eicosapentaenoic acid (20:5n-3), likely originating from the seaweed. Both species of seaweed fly larvae accumulated As, Cd, and Pb, but not Hg. The elevated levels of As and Cd in the larvae (highest measured concentrations 18.4 and 11.6 mg/kg, respectively, based on 12% moisture content) could potentially limit the use of seaweed fly larvae as a feed ingredient.


2000 ◽  
Vol 55 (7-8) ◽  
pp. 569-575 ◽  
Author(s):  
Debra L. Bemis ◽  
Vassilios Roussis ◽  
Constantinios Vagias ◽  
Robert S. Jacobs

Abstract Chloroplasts isolated from three populations of the tropical marine Chlorophyte Anadyomene stellata collected off the coast of Greece were analyzed for their fatty acid composition. Following the preparation of fatty acid methyl esters, GC-MS (El) was utilized to identify the fatty acids present in each population. Including isomers, the fatty acid profile of all three algal populations was comprised of 19 fatty acids (4 saturated, 6 monounsaturated, 9 polyunsaturated) with palmitic acid present in the highest amounts (25-27% of total fatty acids). Analysis of variance revealed significant differences amongst the three populations in the percent of total fatty acids for twelve of the fatty acids. High levels of C20 PUFAs, an atypical observation in Chlorophytes, were observed in all three populations comprising approximately 17% of total fatty acids. Furthermore a 14:2 PUFA , apparently rare in marine macrophytic Chlorophytes, was identified in significant quantities. Surprisingly, we did not find any of the conjugated tetraene containing fatty acids that we previously identified in the A. stellata populations studied from the Florida Keys.


2017 ◽  
Vol 7 (17) ◽  
pp. 3659-3675 ◽  
Author(s):  
S. M. Danov ◽  
O. A. Kazantsev ◽  
A. L. Esipovich ◽  
A. S. Belousov ◽  
A. E. Rogozhin ◽  
...  

The present critical review reports the recent progress of the last 15 years in the selective epoxidation of vegetable oils and their derivatives, in particular unsaturated fatty acids (UFAs) and fatty acid methyl esters (FAMEs).


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 811 ◽  
Author(s):  
Marwa M. Abdel-Aziz ◽  
Tamer Emam ◽  
Marwa M. Raafat

Streptococcus mutans has been considered as the major etiological agent of dental caries, mostly due to its arsenal of virulence factors, including strong biofilm formation, exopolysaccharides production, and high acid production. Here, we present the antivirulence activity of fatty acids derived from the endophytic fungus Arthrographis kalrae isolated from Coriandrum sativum against Streptococcus mutans. The chemical composition of the fatty acids was analyzed by gas chromatography–mass spectrometry GC-MS and revealed nine compounds representing 99.6% of fatty acids, where unsaturated and saturated fatty acids formed 93.8% and 5.8 % respectively. Oleic and linoleic acids were the major unsaturated fatty acids. Noteworthy, the fatty acids at the concentration of 31.3 mg L–1 completely inhibited Streptococcus mutans biofilm, and water insoluble extracellular polysaccharide production in both polystyrene plates, and tooth model assay using saliva-coated hydroxyapatite discs. Inhibition of biofilm correlated significantly and positively with the inhibition of water insoluble extracellular polysaccharide (R = 1, p < 0.0001). Furthermore, Arthrographis kalrae fatty acids at a concentration of 7.8 mg L–1 exhibited acidogenesis-mitigation activity. They did not show bactericidal activity against Streptococcus mutans and cytotoxic activity against human oral fibroblast cells at the concentration used. On the other hand, saliva-coated hydroxyapatite discs treated with sub-minimum biofilm inhibitory concentration of fatty acids showed disturbed biofilm architecture with a few unequally distributed clumped matrices using fluorescence microscopy. Our findings revealed that the intracellular fatty acid arrays derived from endophytic Arthrographis kalrae could contribute to the biofilm-preventing alternatives, specifically Streptococcus mutans biofilms.


Sign in / Sign up

Export Citation Format

Share Document