scholarly journals Study of the antibacterial properties of a composition based on chitosan obtained from dead bees Apis Mellifera

2022 ◽  
Vol 5 (1) ◽  
pp. 1-4
Author(s):  
Kh. A. Khaydarova ◽  
F. M. Nurutdinova ◽  
G. A. Ikhtiyarova ◽  
A. A. Khaydarov

The article provides data on the development of a new thickening composition for printing cotton-lye fabric with antibacterial properties based on biodegradable polymers Chitosan synthesized from Apis Mellifera bee dead with CMC with addition of CMC and synthetic hydrolyzed acrylic emulsion. Studied the fungicidal properties of the developed mixed thickener for active dyes used in printing fabrics. As a result of observations, it was revealed that these new thickeners on the basis of exhibit pronounced antimicrobial activity in relation to the micelle fungus Aspergillus terreus. The optical density of the samples shows that these thickeners are resistant to mycelial fungi. Among thickeners, thickeners based on Uzhitan-?MS-HAE, Uzkhitan-CMS have the most pronounced bactericidal activity, and these thickeners are more stable, they can be used the next day and even on the second day for printing mixed fabrics.

Author(s):  
Kh. A. Khaydarova ◽  
F. M. Nurutdinova ◽  
G. A. Ikhtiyarova ◽  
A. A. Khaydarov

The article provides data on the development of a new thickening composition for printing cotton-lye fabric with antibacterial properties based on biodegradable polymers Chitosan synthesized from Apis Mellifera bee dead with CMC with addition of CMC and synthetic hydrolyzed acrylic emulsion. Studied the fungicidal properties of the developed mixed thickener for active dyes used in printing fabrics. As a result of observations, it was revealed that these new thickeners on the basis of exhibit pronounced antimicrobial activity in relation to the micelle fungus Aspergillus terreus. The optical density of the samples shows that these thickeners are resistant to mycelial fungi. Among thickeners, thickeners based on Uzhitan-?MS-HAE, Uzkhitan-CMS have the most pronounced bactericidal activity, and these thickeners are more stable, they can be used the next day and even on the second day for printing mixed fabrics.


2020 ◽  
Vol 21 (17) ◽  
pp. 6382 ◽  
Author(s):  
Stanislav Kurpe ◽  
Sergei Grishin ◽  
Alexey Surin ◽  
Olga Selivanova ◽  
Roman Fadeev ◽  
...  

Controlling the aggregation of vital bacterial proteins could be one of the new research directions and form the basis for the search and development of antibacterial drugs with targeted action. Such approach may be considered as an alternative one to antibiotics. Amyloidogenic regions can, like antibacterial peptides, interact with the “parent” protein, for example, ribosomal S1 protein (specific only for bacteria), and interfere with its functioning. The aim of the work was to search for peptides based on the ribosomal S1 protein from T. thermophilus, exhibiting both aggregation and antibacterial properties. The biological system of the response of Gram-negative bacteria T. thermophilus to the action of peptides was characterized. Among the seven studied peptides, designed based on the S1 protein sequence, the R23I (modified by the addition of HIV transcription factor fragment for bacterial cell penetration), R23T (modified), and V10I (unmodified) peptides have biological activity that inhibits the growth of T. thermophilus cells, that is, they have antimicrobial activity. But, only the R23I peptide had the most pronounced activity comparable with the commercial antibiotics. We have compared the proteome of peptide-treated and intact T. thermophilus cells. These important data indicate a decrease in the level of energy metabolism and anabolic processes, including the processes of biosynthesis of proteins and nucleic acids. Under the action of 20 and 50 μg/mL R23I, a decrease in the number of proteins in T. thermophilus cells was observed and S1 ribosomal protein was absent. The obtained results are important for understanding the mechanism of amyloidogenic peptides with antimicrobial activity and can be used to develop new and improved analogues.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 332
Author(s):  
Jancikova Simona ◽  
Dordevic Dani ◽  
Sedlacek Petr ◽  
Nejezchlebova Marcela ◽  
Treml Jakub ◽  
...  

The research aim was to use orange essential oil and trehalose in a carrageenan matrix to form edible packaging. The edible packaging experimentally produced by casting from an aqueous solution were evaluated by the following analysis: UV-Vis spectrum, transparency value, transmittance, attenuated total reflectance Fourier-Transform spectroscopy (FTIR), scanning electron microscopy (SEM) and antimicrobial activity. The obtained results showed that the combination of orange essential oil with trehalose decreases the transmittance value in the UV and Vis regions (up to 0.14% ± 0.02% at 356 nm), meaning that produced films can act as a UV protector. Most produced films in the research were resistant to Gram-positive bacteria (Staphylococcus aureus subsp. aureus), though most films did not show antibacterial properties against Gram-negative bacteria and yeasts. FTIR and SEM confirmed that both the amount of carrageenan used and the combination with orange essential oil influenced the compatibility of trehalose with the film matrix. The research showed how different combinations of trehalose, orange essential oils and carrageenan can affect edible film properties. These changes represent important information for further research and the possible practical application of these edible matrices.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 659
Author(s):  
Iva Rezić ◽  
Mislav Majdak ◽  
Vanja Ljoljić Bilić ◽  
Ivan Pokrovac ◽  
Lela Martinaga ◽  
...  

In this work the in vitro antimicrobial activity of colloidal solutions of nine different commercially available nanoparticles were investigated against Staphylococcus aureus strains, both methicillin-sensitive (MSSA) and methicillin-resistant (MRSA). Research covered antimicrobial investigation of different metal and metal-oxide nanoparticles, including Ag 10 nm, Ag 40 nm, Al2O3 100 nm, Au 20 nm, Pt 4 nm, TiO2 100 nm, Y2O3 100 nm, ZnO 100 nm and ZrO2 100 nm nanoparticles. Such materials were foreseen to be applied as coatings on 3D-printed biodegradable polymers: i.e., catheters, disposable materials, hospital bedding items, disposable antimicrobial linings and bandages for chronic wounds. Therefore, the antimicrobial activity of the nanoparticles was determined by agar well diffusion assays and serial microdilution broth assays. In addition, the chromatographic characterization of elements present in trace amounts was performed as a method for tracing the nanoparticles. Moreover, the potential of preparing the rough surface of biodegradable polymers for coating with antimicrobial nanoparticles was tested by 3D-printing fused deposition methodology. The in vitro results have shown that particular nanoparticles provided powerful antimicrobial effects against MSSA and MRSA strains, and can be easily applied on different biopolymers.


2021 ◽  
Vol 22 (12) ◽  
pp. 6472
Author(s):  
Beata Kaczmarek-Szczepańska ◽  
Marcin Wekwejt ◽  
Olha Mazur ◽  
Lidia Zasada ◽  
Anna Pałubicka ◽  
...  

This paper concerns the physicochemical properties of chitosan/phenolic acid thin films irradiated by ultraviolet radiation with wavelengths between 200 and 290 nm (UVC) light. We investigated the preparation and characterization of thin films based on chitosan (CTS) with tannic (TA), caffeic (CA) and ferulic acid (FA) addition as potential food-packaging materials. Such materials were then exposed to the UVC light (254 nm) for 1 and 2 h to perform the sterilization process. Different properties of thin films before and after irradiation were determined by various methods such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimeter (DSC), mechanical properties and by the surface free energy determination. Moreover, the antimicrobial activity of the films and their potential to reduce the risk of contamination was assessed. The results showed that the phenolic acid improving properties of chitosan-based films, short UVC radiation may be used as sterilization method for those films, and also that the addition of ferulic acid obtains effective antimicrobial activity, which have great benefit for food packing applications.


2014 ◽  
Vol 44 (2) ◽  
pp. 287-290 ◽  
Author(s):  
Carolinie Batista Nobre da Cruz ◽  
Fabio Alessandro Pieri ◽  
Gislene Almeida Carvalho-Zilse ◽  
Patrícia Puccinelli Orlandi ◽  
Carlos Gustavo Nunes-Silva ◽  
...  

Honeys are described possessing different properties including antimicrobial. Many studies have presented this activity of honeys produced by Apis mellifera bees, however studies including activities of stingless bees honeys are scarce. The aim of this study was to compare the antimicrobial activity of honeys collected in the Amazonas State from Melipona compressipes, Melipona seminigra and Apis mellifera against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Chromobacterium violaceum, and Candida albicans. Minimum inhibitory concentrations were determined using the agar dilution method with Müller-Hinton agar (for bacteria) or Saboraud agar (for yeast). Staphylococcus aureus and E. faecalis were inhibited by all honeys at concentrations below 12%, while E. coli and C. violaceum were inhibited by stingless bee honeys at concentrations between 10 and 20%. A. mellifera honey inhibited E. coli at a concentration of 7% and Candida violaceum at 0.7%. C. albicans were inhibited only with honey concentrations between 30 and 40%. All examined honey had antimicrobial activity against the tested pathogens, thus serving as potential antimicrobial agents for several therapeutic approaches.


2013 ◽  
Vol 14 (5) ◽  
pp. 924-929 ◽  
Author(s):  
Reena Kulshrestha ◽  
J Kranthi ◽  
P Krishna Rao ◽  
Feroz Jenner ◽  
V Abdul Jaleel ◽  
...  

ABSTRACT Aim The present study was conducted to evaluate the efficacy of commercially available herbal toothpastes against the different periodontopathogens. Materials and methods Six herbal toothpastes that were commonly commercially available were included in the study. Colgate herbal, Babool, Meswak, Neem active, Dabur red toothpastes were tested for the study whereas sterile normal saline was used as control. Antimicrobial efficacies of dentifrices were evaluated against Streptococcus mutans and Actinobacillus actinomycetemcomitans. The antimicrobial properties of dentifrices were tested by measuring the maximum zone of inhibition at 24 hours on the Mueller Hinton Agar media inoculated with microbial strain using disk diffusion method. Each dentifrice was tested at 100% concentration (full strength). Results The study showed that all dentifrices selected for the study were effective against the entire test organism but to varying degree. Neem active tooth paste gave a reading of 25.4 mm as the zone of inhibition which was highest amongst all of the test dentifrices. Colgate Herbal and Meswak dentifrices recorded a larger maximum zone of inhibition, measuring 23 and 22.6 mm respectively, compared to other toothpastes. All other dentifrices showed the zone of inhibition to be between 17 and 19 mm respectively. Conclusion The antibacterial properties of six dentifrices were studied in vitro and concluded that almost all of the dentifrices available commercially had antibacterial properties to some extent to benefit dental health or antiplaque action. How to cite this article Jenner F, Jaleel VA, Kulshrestha R, Maheswar G, Rao PK, Kranthi J. Evaluating the Antimicrobial Activity of Commercially Available Herbal Toothpastes on Microorganisms Associated with Diabetes Mellitus. J Contemp Dent Pract 2013;14(5):924-929.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4643
Author(s):  
Hamisah Ismail ◽  
Farah ‘Atiqah Abdul Azam ◽  
Zalita Zainuddin ◽  
Hamidun Bunawan ◽  
Muhamad Afiq Akbar ◽  
...  

β-wollastonite (βW) has sparked much interest in bone defect recovery and regeneration. Biomaterial-associated infections and reactions between implants with human cells have become a standard clinical concern. In this study, a green synthesized βW, synthesized from rice husk ash and a calcined limestone precursor, was incorporated with mullite, maghemite, and silver to produce β wollastonite composite (βWMAF) to enhance the tensile strength and antibacterial properties. The addition of mullite to the βWMAF increased the tensile strength compared to βW. In vitro bioactivity, antibacterial efficacy, and physicochemical properties of the β-wollastonite and βWMAF were characterized. βW and βWMAF samples formed apatite spherules when immersed in simulated body fluid (SBF) for 1 day. In conclusion, βWMAF, according to the tensile strength, bioactivity, and antibacterial activity, was observed in this research and appropriate for the reconstruction of cancellous bone defects.


Sign in / Sign up

Export Citation Format

Share Document