In vitro anti-fungal activity of few medicinal plants of Visakhapatnam region against clinically isolated dermatophytes

2016 ◽  
Vol 5 (05) ◽  
pp. 4573
Author(s):  
Phani Kumari Uddandapu* ◽  
K. Chandrasekhara Naidu ◽  
Y. Venkateswar Rao

The aim of the study was to evaluate the antifungal activity of methanol extracts of twenty plant species used in traditional Indian medicine against the clinically isolated fungi. The plants were selected on the basis of their reported ethnobotanical uses. The studies on plants of South Indian medicinal plants collected from regions of Visakhapatnam and were investigated against three clinical fungal isolates viz., Trichophyton mentagrophytes, Epidermophyton floccosum and Candida albicans using agar well diffusion method. The plant extracts were prepared using the solvent methanol. It is clear from the results that, the extract of twenty plants used in this study acts as a good source of antibiotics against various fungal pathogens tested and exhibited a broad spectrum of antifungal activity. The results of this study support the use of all the selected twenty medicinal plants to discover bioactive natural products that may serve as leads in the development of new pharmaceuticals that address unmet therapeutic needs.

2009 ◽  
Vol 4 (9) ◽  
pp. 1934578X0900400 ◽  
Author(s):  
Karina E. Machado ◽  
Valdir Cechinel Filho ◽  
Rosana C. B. Cruz ◽  
Christiane Meyre-Silva ◽  
Alexandre Bella Cruz

Antifungal activities of Eugenia umbelliflora Berg. (Myrtaceae) were tested in vitro against a panel of standard and clinical isolates of human fungal pathogens (dermatophytes and opportunistic saprobes). Methanol extracts of leaves and fruits of E. umbelliflora were separately prepared and partitioned, to yield dichloromethane (DCM), ethyl acetate (EtOAc) and aqueous fractions (Aq). Three compounds (1-3) were obtained from the DCM extract using chromatographic procedures. Antifungal assays were performed using agar dilution techniques. Both extracts (fruits and leaves), their DCM and EtOAc fractions, and compound 2 (betulin and betulinic acid) presented selective antifungal activity against dermatophytes (Epidermophyton floccosum, Microsporum canis, Microsporum gypseum, Trichophyton rubrum, Trichophyton mentagrophytes), with MIC values between 200 and 1000 μg/mL, and interestingly, inhibited 4/5 species with MIC values of ≤500 ≤g/mL. The aqueous fractions of fruits and leaves, and compounds 1 (α, β amyrin) and 3 (taraxerol) were inactive up to the maximum concentrations tested (1000 μg/mL).


2019 ◽  
Vol 7 (1) ◽  
pp. 44-54
Author(s):  
Muhaimin Muhaimin ◽  
Syamsurizal Syamsurizal ◽  
Madyawati Latief ◽  
Rahmi Iskandar ◽  
Anis Yohana Chaerunisaa ◽  
...  

Background: Eusiderin A is a neolignan derivate, which makes up the majority of the secondary metabolite of Eusideroxylon zwageri. It has been reported as a potent biopesticide and antifungal agent. Previous studies on the oxidation of terminal methylene of the allylic chain in Eusiderin A have been able to produce primary alcohol, pinacol, and an aldehyde which demonstrated strong activity against plant pathogenic fungi, therefore activity against dermal fungi needs to be studied. Objective: The current study aims to improve the hydrophilicity of Eusiderin A via oxidation of the allylic chain in order to derive a potent antifungal property. Methods: Transformation of Eusiderin A has been achieved by using the Wacker Oxidation Method in combination with the α-Hydroxylation-Ketone Method to produce 7,3’-epoxy-8,4’-oxyneolignane-1’- carboxylic acid. The structure of the 7,3’-epoxy-8,4’-oxyneolignane-1’-carboxylic acid was identified from spectroscopy data. The in vitro antifungal activity study was performed using the paper disc diffusion method against Trichophyton mentagrophytes. Results: New molecule of natural Eusiderin A through the oxidation of the allylic chain to increase the hydrophilicity of Eusiderin A has been designed. Based on the observed UV, IR, 1H and 13C-NMR, and MS spectra, it can be stated that the 7,3’-epoxy-8,4’-oxyneolignane-1’-carboxylic acid has been formed. At a concentration of 50 ppm, this compound showed antifungal activity against Trichophyton mentagrophytes. Conclusion: It can be concluded that the 7,3’-epoxy-8,4’-oxyneolignane-1’-carboxylic acid is a potent antifungal agent as it is able to inhibit the Trichophyton mentagrophytes colonies growth.


2017 ◽  
Vol 43 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Mustafa Nadhim Owaid ◽  
Sajid Salahuddin Saleem Al-Saeedi ◽  
Idham Ali Abed Al-Assaffii

ABSTRACT This study evaluated the antifungal activity of four fruiting bodies of oyster mushroom harvested from three agro-substrates in vitro. At three concentrations (2, 4 and 8 mg/disc), extracts discs of Pleurotus ostreatus (grey), P. ostreatus var. florida, P. cornucopiae var. citrinopileatus and P. salmoneostramineus were tested against three fungal pathogens: Trichoderma harzianum (after 2 days), Verticillium sp. and Pythium sp. (after 5 days) via the Disc Diffusion Method. The highest overall activity was by the extract disc Y2 (P. cornucopiae grown on M2 substrate; 70% wheat straw, 20% hardwood sawdust and 10% date palm fibers) and the lowest by Y1 (P. cornucopiae grown on wheat straw). The best inhibition zone was 16 mm toward T. harzianum by extract disc W2 (2 mg/disc) (P. ostreatus var. florida grown on M2 substrate), compared with 23 mm with Nystatin disc (100 U), followed 7 and 5 mm by P3 (P. salmoneostramineus grown on M3 substrate; 50% wheat straw, 30% hardwood sawdust and 20% date palm fibers) extract disc (8 mg/disc) against Pythium sp., and (4 mg/disc) against Verticillium sp., respectively.


2021 ◽  
Vol 9 (A) ◽  
pp. 1081-1085
Author(s):  
Margaret Oniha ◽  
Angela Eni ◽  
Olayemi Akinnola ◽  
Emmanuel Adedayo Omonigbehin ◽  
Eze Frank Ahuekwe ◽  
...  

BACKGROUND: Plants remain the natural sources of efficacious phytonutrients with beneficial assets to mankind against microbial disorders. Diverse folklores have reported the roles of medicinal plants in the remedies of various disorders in man and animals. Metabolites and pesticides from the plant origin are considered better alternatives due to favorable environmental impact as compared to the synthetic counterparts. Significant economic losses and hindrance of global papaya production are due to fungal diseases. Phytochemicals have made medicinal plants become sources of environmentally friendly alternative antimicrobials. AIM: This study aimed at assessing the antifungal activity of leaf extracts of Moringa oleifera against phytopathogenic fungi isolated from Carica papaya. METHODS: n-Hexane, ethyl acetate, ethanol, methanol, and aqueous extracts of M. oleifera leaves were evaluated for their antifungal properties. Agar well-diffusion method was implemented for in vitro screening, minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of the extract types against fungal species of Aspergillus, Penicillium, Rhizopus, and Trichoderma. RESULTS: All the extracts evaluated inhibited fungal growth to some degree, with the aqueous extract exhibiting more inhibitory activities than the organic extracts. There was significant inhibition of fungal development by the tested plant extracts at different concentrations. MIC of the extracts was 15.625 mg/ml while the MFC values ranged between 15.625 and 31.25. In this work, the antifungal activity of M. oleifera was found to be equal or higher than commercially available fungicide, ketoconazole. CONCLUSION: The results of this study indicate that foliole extracts of M. oleifera have potential for use as biofungicides for plant protection against fungal diseases.


Author(s):  
Maria-Dimitra Tsolakidou ◽  
Ioannis A Stringlis ◽  
Natalia Fanega-Sleziak ◽  
Stella Papageorgiou ◽  
Antria Tsalakou ◽  
...  

Abstract Composts represent a sustainable way to suppress diseases and improve plant growth. Identification of compost-derived microbial communities enriched in the rhizosphere of plants and characterization of their traits, could facilitate the design of microbial synthetic communities (SynComs) that upon soil inoculation could yield consistent beneficial effects towards plants. Here, we characterized a collection of compost-derived bacteria, previously isolated from tomato rhizosphere, for in vitro antifungal activity against soil-borne fungal pathogens and for their potential to change growth parameters in Arabidopsis. We further assessed root-competitive traits in the dominant rhizospheric genus Bacillus. Certain isolated rhizobacteria displayed antifungal activity against the tested pathogens and affected growth of Arabidopsis, and Bacilli members possessed several enzymatic activities. Subsequently, we designed two SynComs with different composition and tested their effect on Arabidopsis and tomato growth and health. SynCom1, consisting of different bacterial genera, displayed negative effect on Arabidopsis in vitro, but promoted tomato growth in pots. SynCom2, consisting of Bacilli, didn't affect Arabidopsis growth, enhanced tomato growth and suppressed Fusarium wilt symptoms. Overall, we found selection of compost-derived microbes with beneficial properties in the rhizosphere of tomato plants, and observed that application of SynComs on poor substrates can yield reproducible plant phenotypes.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


2021 ◽  
Vol 16 (7) ◽  
pp. 15-22
Author(s):  
Paul Giftson ◽  
Jerrine Joseph ◽  
Revathy Kalyanasundaram ◽  
V. Ramesh Kumar ◽  
Wilson Aruni

Tuberculosis (TB) is a communicable disease and remains one of the top 10 causes of death worldwide. One fourth of the world population is infected with TB at a risk of developing disease. The increase in the incidence of drug resistant TB around the world urges the need to develop a new candidate to fight against the disease. Plants were considered as the rich source of bioactive components to be used as potential drugs. Medicinal plants are used in pure as well as crude materials for their medicinal properties. Our research aims in identifying the phyto-molecules which have anti- tuberculosis property. Four medicinal plants namely, Acalyphaciliata (Kuppaimeni), Solanumtrilobatum (Thuthuvalai), Momordicacharantia (Bitter Gourd) and Sennaauriculata (Avaram) were chosen to evaluate their antimicrobial activity focusing on anti-tubercular activity. The methanol extracts of the medicinal plants showed significant inhibitory activity against bacterial and fungal pathogens. Sennaauriculata methanol extracts showed activity against S. aureus, E. coli, P. aeruginosa and C. albicans. In the screening of antimycobacterial activity done by LRP assay, among the plant extracts tested, the hexane crude extracts of Momordicacharantia (Bitter Gourd) showed 82.2% and 81.03% of inhibition against M. tuberculosis H37Rv at 500µg/ml and 250µg/ml concentration respectively. Similarly, the methanol crude extracts of Momordicacharantia showed 87.14% and 63.55% of inhibition at 500µg/ml and 250µg/ml concentration respectively.


2018 ◽  
Vol 7 (3) ◽  
pp. 230-241
Author(s):  
Savita Joshi ◽  
◽  
Parikshit Kumar ◽  
Prabha Pant ◽  
SC Sati ◽  
...  

Fungicidal activity of 10 ethnobotanically known Kumaun Himalayan gymnospermous plants namely Araucaria cunninghamii, Biota orientalis, Cedrus deodara, Cephalotaxus griffithi, Cryptomeria japonica Cupressus torulosa, Ginkgo biloba, Juniperus communis, Picea smithiana and Pinus wallichiana were tested against six plant disease causing fungal pathogens by agar well-diffusion method. Forty extracts of these gymnospermic leaves in different organic solvents (methanol, ethanol, chloroform and hexane) were studied by performing the 160 sets of experiments. The MIC values of each extract (where % inhibition ≥ 40%) were also determined. All the plant extracts exhibited strong antifungal activity. Results indicated that all leaves extracts of C. griffithi and G. biloba were found most effective among the tested plants extracts. Hexane extract of C. griffithi was showed highest inhibitory activity against C. falcatum (72%; MIC, 7.81µg/ml) and T. indica (70%; MIC, 15.62µg/ml). On the other hand, ethanol extract of G. biloba also showed remarkable activity against P. oryzae (66% with MIC, 7.81g/ml). While P. wallichiana leave extracts were found less active among the studied plants against all the tested fungal strains. The chloroform extracts were found the most effective against all the tested fungi (10% to 60%), followed by ethanol extract (30-50%), methanol extract (20-40%), while in hexane extracts ranged 10-30% only. The extracts of C. griffithi exhibited superior Relative Antifungal Activity (RAA, 20%), followed by G. biloba and A. cunninghamii (RAA, 19 and 12%, respectively). All data were also analyzed for determination of total activity of plant for each studied species of gymnosperm. C. griffithi had maximum activity i.e. 71 % followed by G. biloba (54%) and A. cunninghamii (33%). C. torulosa showed the least total activity and RAA i.e. 8% and 3%, respectively. All the plant species assayed possess definite antifungal properties and suggested for phytochemical analysis to identify the active principles responsible for their antifungal activity


2018 ◽  
Author(s):  
Maria-Dimitra Tsolakidou ◽  
Ioannis A. Stringlis ◽  
Natalia Fanega-Sleziak ◽  
Stella Papageorgiou ◽  
Antria Tsalakou ◽  
...  

AbstractComposts represent a sustainable way to suppress diseases and improve plant growth. Identification of compost-derived microbial communities enriched in the rhizosphere of plants and characterization of their traits, could facilitate the design of microbial synthetic communities (SynComs) that upon soil inoculation could yield consistent beneficial effects towards plants. Here, we characterized a collection of compost-derived bacteria, previously isolated from tomato rhizosphere, forin vitroantifungal activity against soil-borne fungal pathogens and for their potential to change growth parameters inArabidopsis. We further assessed root-competitive traits in the dominant rhizospheric genusBacillus. Certain isolated rhizobacteria displayed antifungal activity against the tested pathogens and affected growth ofArabidopsis, and Bacilli members possessed several enzymatic activities. Subsequently, we designed two SynComs with different composition and tested their effect onArabidopsisand tomato growth and health. SynCom1, consisting of different bacterial genera, displayed negative effect onArabidopsis in vitro, but promoted tomato growth in pots. SynCom2, consisting of Bacilli, didn’t affectArabidopsisgrowth, enhanced tomato growth and suppressed Fusarium wilt symptoms. Overall, we found selection of compost-derived microbes with beneficial properties in the rhizosphere of tomato plants, and observed that application of SynComs on poor substrates can yield reproducible plant phenotypes.


Sign in / Sign up

Export Citation Format

Share Document