Adsorption of Crude Oil Using Meshed Groundnut Husk

Author(s):  
Darlington Bon Nwokoma ◽  
Uchenna Anene

There is an increasing awareness of the impact of spilled crude oil and its refined products on human health and environment. The potential of using groundnut husk, agro-based waste, which is not only ubiquitous but indiscriminately littered around Nigerian urban areas, as an adsorbent in removal of oil spilled on water was investigated. Groundnut shell, a waste generated in local vegetable oil processing plants, has been converted into a low cost adsorbent. The groundnut husk was treated and meshed to adsorb crude oil from water at various experimental conditions. Investigations include the effects of sorbent dosage, particle size, contact time and temperature on the adsorption of crude oil. Meshed groundnut shell, especially less than 150 µm, exhibited high affinity for oil adsorption with time. The optimum adsorption temperature range lies between 25 – 45°C. The adsorption data indicates that a pseudo-second-order equation could be used to study the adsorption kinetics and the correlation coefficient of 0.9985 indicates that the sorption process is dominated by adsorption process. The results demonstrate that crude oil removal by adsorption onto this abundantly available low cost and readily biodegradable material is feasible. With high affinity for oil and low water pick up, meshed groundnut shell adsorbent could be said to be oleophilic or hydrophobic.

2021 ◽  
Vol 10 (11) ◽  
pp. 769
Author(s):  
Zhuhua Liao ◽  
Hao Xiao ◽  
Silin Liu ◽  
Yizhi Liu ◽  
Aiping Yi

The adaptability of traffic lights in the control of vehicle traffic heavily affects the trafficability of vehicles and the travel efficiency of traffic participants in busy urban areas. Existing studies mainly have focused on the presence of traffic lights, but rarely evaluate the impact of traffic lights by analyzing traffic data, thus there is no solution for practicably and precisely self-regulating traffic lights. To address these issues, we propose a low-cost and fast traffic signal detection and impact assessment framework, which detects traffic lights from GPS trajectories and intersection features in a supervised way, and analyzes the impact range and time of traffic lights from intersection track data segments. The experimental results show that our approach gains the best AUC value of 0.95 under the ROC standard classification and indicates that the impact pattern of traffic lights at intersections is high related to the travel rule of traffic participants.


2019 ◽  
Vol 8 (2) ◽  
pp. 317-328 ◽  
Author(s):  
Aboubakr Benabbas ◽  
Martin Geißelbrecht ◽  
Gabriel Martin Nikol ◽  
Lukas Mahr ◽  
Daniel Nähr ◽  
...  

Abstract. The concern about air quality in urban areas and the impact of particulate matter (PM) on public health is turning into a big debate. A good solution to sensitize people to this issue is to involve them in the process of air quality monitoring. This paper presents contributions in the field of PM measurements using low-cost sensors. We show how a low-cost PM sensor can be extended to transfer data not only over Wi-Fi but also over the LoRa protocol. Then, we identify some of the correlations existing in the data through data analysis. Afterwards, we show how semantic technologies can help model and control sensor data quality in an increasing PM sensor network. We finally wrap up with a conclusion and plans for future work.


2020 ◽  
Vol 47 (9) ◽  
pp. 1105-1115
Author(s):  
Afshin Shariat Mohaymany ◽  
Matin Shahri

Traffic congestion in urban areas is a challenging issue in transportation planning. Policy options have been proposed to evaluate the impacts of interventional action through change detection or before–after studies. In this research, low-cost traffic image data collected by smartphone-based application have been employed and the impact of new congestion charging scheme (CCS) upon congestion within congestion charging zone (CCZ) as well as the entire network in Tehran, the capital of Iran has been investigated. Applying statistical tests indicated the significance of change in congestion within CCZ by applying the new CCS. Differential Moran’s I as spatial autocorrelation index specified the spatial patterns of congestion between the critical time of changing the scheme on weekdays (17:00–19:00) and weekend (6:00–13:00) after implementing the new CCS. The approach in this paper can be used with a low-cost appropriate instrument to monitor the probable change in traffic congestion by introducing any new scheme or sudden change.


Author(s):  
Guillaume Raynel ◽  
Debora Salomon Marques ◽  
Sajjad Al-Khabaz ◽  
Mohammad Al-Thabet ◽  
Lanre Oshinowo

The current practice for crude oil demulsifier selection consists of pre-screening of the best performing demulsifiers followed by field trials to determine the optimum demulsifier dosage. The method of choice for demulsifier ranking is the bottle test. As there is no standard bottle test method, there are different methodologies reported in the literature. In this work, a new approach to bottle test and field trial was described which improved significantly the selection and dosage of the demulsifier. The bottle test was optimized by measuring an accurate mass of demulsifier. This method produces repeatable results. This bottle-test methodology was benchmarked against field trial results performed in oil processing plants. The field trials were also improved to avoid the accumulation effect of demulsifier, when optimizing their dosage. The field data for the optimization of demulsifier dosage was analyzed mathematically; and a graphical method to determine the optimum range is described.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Bilal kazmi ◽  
Syed Ali Ammar Taqvi ◽  
Muhammad Naqvi ◽  
Suhaib Umer Ilyas ◽  
Ali Moshin ◽  
...  

AbstractHydrocarbon processing from extraction to the final product is an important aspect that needs an optimised technology for consumption-led market growth. This study investigated real data from the oil processing facility and analysed the simulation model for the entire crude oil processing unit based on the process system engineering aspect using Aspen HYSYS. The study mainly emphasises the process optimisation in processing the hydrocarbon for the maximum yield of the product with less energy consumption. The investigation also includes a thorough economic analysis of the processing facility. The datasets for oil properties are obtained from a modern petroleum refinery. The investigation comprises of varying transient conditions, such as well shutdowns using three oil reservoirs (low, intermediate, and heavy oil). The impact of various conditions, including process heating, well shutdown, oil combinations, presence of water on the production, is analysed. The results indicate that the factors involving crude oil processing are significantly affected by the process conditions, such as pressure, volume, and temperature. The vapour recovery unit is integrated with the oil processing model to recover the separator's gas. The optimisation analysis is performed to maximise the liquid recovery with Reid vapour pressure of 7 and minimum water content in oil around 0.5%. Economic analysis provided an overall capital cost of $ 9.7 × 106 and an operating cost of $2.1 × 106 for the process configuration. The model results further investigate the constraints that maximise the overall energy consumption of the process and reduce the operational cost.


Separations ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Huda S. Alhasan ◽  
Nadiyah Alahmadi ◽  
Suhad A. Yasin ◽  
Mohammed Y. Khalaf ◽  
Gomaa A. M. Ali

This work describes the hydroxyapatite nanoparticle (HAP) preparation from eggshell waste and their application as an adsorbent for Cephalexin (Ceph) antibiotic removal from aqueous solutions. Chemical precipitation with phosphoric acid was used to evaluate the feasibility of calcium oxide for HAP preparation. The structural properties of HAP were characterized by X-ray diffraction, which revealed the formation of the hydroxyapatite crystalline phase formation. In addition, transmitting electron spectroscopy showed an irregular shape with a variation in size. The impact of various experimental conditions on the removal efficiency such as the solution’s pH, contact time, HAP mass, solution temperature, and Ceph concentration were studied. Experimental data showed that HAP could remove most Ceph species from aqueous solutions within 1 h at pH = 7 with 70.70% adsorption efficiency utilizing 50 mg of the HAP. The removal process of Ceph species by HAP was kinetically investigated using various kinetic models, and the results showed the suitability of the pseudo-second-order kinetic model for the adsorption process description. Moreover, the removal process was thermodynamically investigated; the results showed that the removal was spontaneous endothermic and related to the randomness increase. The data confirmed that HAP had high efficiency in removing Ceph antibiotics from an aqueous solution.


2021 ◽  
Vol 118 (14) ◽  
pp. e2023185118
Author(s):  
Joan Hamory ◽  
Edward Miguel ◽  
Michael Walker ◽  
Michael Kremer ◽  
Sarah Baird

Estimating the impact of child health investments on adult living standards entails multiple methodological challenges, including the lack of experimental variation in health status, an inability to track individuals over time, and accurately measuring living standards and productivity in low-income settings. This study exploits a randomized school health intervention that provided deworming treatment to Kenyan children, and uses longitudinal data to estimate impacts on economic outcomes up to 20 y later. The effective respondent tracking rate was 84%. Individuals who received two to three additional years of childhood deworming experienced a 14% gain in consumption expenditures and 13% increase in hourly earnings. There are also shifts in sectors of residence and employment: treatment group individuals are 9% more likely to live in urban areas, and experience a 9% increase in nonagricultural work hours. Most effects are concentrated among males and older individuals. The observed consumption and earnings benefits, together with deworming’s low cost when distributed at scale, imply that a conservative estimate of its annualized social internal rate of return is 37%, a high return by any standard.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 804
Author(s):  
Abdul Samad ◽  
Freddy Ernesto Melchor Mimiaga ◽  
Bernd Laquai ◽  
Ulrich Vogt

Air pollution in urban areas is a huge concern that demands an efficient air quality control to ensure health quality standards. The hotspots can be located by increasing spatial distribution of ambient air quality monitoring for which the low-cost sensors can be used. However, it is well-known that many factors influence their results. For low-cost Particulate Matter (PM) sensors, high relative humidity can have a significant impact on data quality. In order to eliminate or reduce the impact of high relative humidity on the results obtained from low-cost PM sensors, a low-cost dryer was developed and its effectiveness was investigated. For this purpose, a test chamber was designed, and low-cost PM sensors as well as professional reference devices were installed. A vaporizer regulated the humid conditions in the test chamber. The low-cost dryer heated the sample air with a manually adjustable intensity depending on the voltage. Different voltages were tested to find the optimum one with least energy consumption and maximum drying efficiency. The low-cost PM sensors with and without the low-cost dryer were compared. The experimental results verified that using the low-cost dryer reduced the influence of relative humidity on the low-cost PM sensor results.


2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


Sign in / Sign up

Export Citation Format

Share Document