scholarly journals SYNTHESIS OF 2-HIDROXYXANTHONE FROM XANTHONE AS A BASIC MATERIAL FOR NEW ANTIMALARIAL DRUGS

Author(s):  
Amanatie Amanatie ◽  
Jumina Jumina ◽  
Mustofa Mustofa ◽  
Hanafi M ◽  
La Ode Kadidae ◽  
...  

Objective: The purpose of this research is to synthesize 2-hydroxyxanthone from xanthone and to evaluate its antiplasmodial activity.Methods: The synthesis of 2-hydroxyxanthone followed the sequence of these synthetic stages, namely: 2-nitroxanthone, 2-aminoxanthone, and 2-hydroxyxanthone. The products were separated by chromatography methods including thin layer chromatography and vacuum liquid chromatography. Compound structures of the isolated products were determined based on their infrared and nuclear magnetic resonance spectra. To support these findings, the spectra were also matched to the corresponding data from literatures. The biological properties of the synthetic compound were evaluated toward Plasmodium falciparum 3D7.Results: 2-nitroxanthone was obtained as a brownish-yellow crystal in 69.00% yield with Madhya Pradesh of 181°C. Reduction of 2-nitroxanthone using SnCl2.2H2O/hydrogen chloride produced 2-aminoxanthone as a pale-yellow solid in 60.60% yield. Finally, the desired 2-hydroxyxanthone was achieved by initially reacting 2-aminoxanthone with sodium nitride to produce diazonium salt. Then, hydrolysis of the salt yielded 2-hydroxyxanthone as a white solid in 69.81% yield. Synthesis of 2-hydroxyxanthone from xanthone had an overall yield of38.35%. In vitro antiplasmodial assay against P. falciparum 3D7 showed that the half maximal inhibitory concentration value was 0.44 μg/mL.Conclusions: An antimalarial compound (2-hydroxyxanthone) was successfully synthesized from xanthone in three steps of synthetic reactions, i.e., the formation of 2-nitroxanthone, 2-aminoxanthone, and 2-hydroxyxanthone. 

2018 ◽  
Vol 69 (6) ◽  
pp. 1416-1418
Author(s):  
Alexandru Szabo ◽  
Ilare Bordeasu ◽  
Ion Dragos Utu ◽  
Ion Mitelea

Hydroxyapatite (HA) is a very common material used for biomedical applications. Usually, in order to improve its poor mechanical properties is combined or coated with other high-strength materials.The present paper reports the manufacturing and the biocompatibility behaviour of two different biocomposite coatings consisting of alumina (Al2O3) and hydroxyapatite (HA) using the high velocity oxygen fuel (HVOF) spraying method which were deposited onto the surface of a commercially pure titanium substrate. The biological properties of the Al2O3-HA materials were evaluated by in vitro studies. The morphology of the coatings before and after their immersing in the simulated body fluid (SBF) solution was characterized by scanning electron microscopy (SEM). The results showed an important germination of the biologic hydroxyapatite crystallite on the surface of both coatings.


2020 ◽  
Vol 28 ◽  
Author(s):  
Justyna Hajtuch ◽  
Karolina Niska ◽  
Iwona Inkielewicz-Stepniak

Background: Cancer along with cardiovascular diseases are globally defined as leading causes of death. Importantly, some risk factors are common to these diseases. The process of angiogenesis and platelets aggregation are observed in cancer development and progression. In recent years, studies have been conducted on nanodrugs in these diseases that have provided important information on the biological and physicochemical properties of nanoparticles. Their attractive features are that they are made of biocompatible, well-characterized and easily functionalized materials. Unlike conventional drug delivery, sustained and controlled drug release can be obtained by using nanomaterials. Methods: In this article, we review the latest research to provide comprehensive information on nanoparticle-based drugs for the treatment of cancer, cardiovascular disease associated with abnormal haemostasis, and the inhibition of tumorassociated angiogenesis. Results: The results of the analysis of data based on nanoparticles with drugs confirm their improved pharmaceutical and biological properties, which gives promising antiplatelet, anticoagulant and antiangiogenic effects. Moreover, the review included in vitro, in vivo research and presented nanodrugs with chemotherapeutics approved by Food and Drug Administration. Conclusion: By the optimization of nanoparticles size and surface properties, nanotechnology are able to deliver drugs with enhanced bioavailability in treatment of cardiovascular disease, cancer and inhibition of cancer-related angiogenesis. Thus, nanotechnology can improve the therapeutic efficacy of the drug, but there is a need for a better understanding of the nanodrugs interaction in the human body, because this is a key factor in the success of potential nanotherapeutics.


2019 ◽  
Vol 20 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Abdullah M. Alnuqaydan ◽  
Bilal Rah

Background:Tamarix Articulata (T. articulata), commonly known as Tamarisk or Athal in Arabic region, belongs to the Tamaricaece species. It is an important halophytic medicinal plant and a good source of polyphenolic phytochemical(s). In traditional medicines, T. articulata extract is commonly used, either singly or in combination with other plant extracts against different ailments since ancient times.Methods:Electronic database survey via Pubmed, Google Scholar, Researchgate, Scopus and Science Direct were used to review the scientific inputs until October 2018, by searching appropriate keywords. Literature related to pharmacological activities of T. articulata, Tamarix species, phytochemical analysis of T. articulata, biological activities of T. articulata extracts. All of these terms were used to search the scientific literature associated with T. articulata; the dosage of extract, route of administration, extract type, and in-vitro and in-vivo model.Results:Numerous reports revealed that T. articulata contains a wide spectrum of phytochemical(s), which enables it to have a wide window of biological properties. Owing to the presence of high content of phytochemical compounds like polyphenolics and flavonoids, T. articulata is a potential source of antioxidant, anti-inflammatory and antiproliferative properties. In view of these pharmacological properties, T. articulata could be a potential drug candidate to treat various clinical conditions including cancer in the near future.Conclusion:In this review, the spectrum of phytochemical(s) has been summarized for their pharmacological properties and the mechanisms of action, and the possible potential therapeutic applications of this plant against various diseases discussed.


2020 ◽  
Vol 16 (1) ◽  
pp. 65-74
Author(s):  
Ortensia Ilaria Parisi ◽  
Mariarosa Ruffo ◽  
Fabio Amone ◽  
Rocco Malivindi ◽  
Domenico Gorgoglione ◽  
...  

Background: The Rotonda’s Red Eggplant belongs to the family of Solanum aethiopicum and it is cultivated in a specific area of Potenza (Basilicata, South of Italy) including villages of Rotonda, Viggianello, Castelluccio Superiore and Castelluccio Inferiore. The Red Eggplant cultivated in this area has gained the PDO, “Protected Designation of Origin”. Objective: The aim of this research was to evaluate the use of PDO Rotonda’s Red Eggplant extract as a possible nutraceutical supplement. The antioxidant, antihypertensive, hypoglycemic, and hypolipidemic properties were in vitro evaluated. Methods: The antioxidant activity was investigated by evaluating the scavenging properties against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals and by performing the Ammonium Molybdate and Folin-Ciocalteu assay. The hypoglycemic and antihypertensive activity was studied by evaluating the α-Amylase, α-Glucosidase and Angiotensin Converting Enzyme, respectively, inhibiting activity. In order to evaluate the hypolipidemic activity, the pancreatic lipase inhibiting property was determined and Oil Red O staining assay was performed. Finally, to evaluate the possible use of this extract as a minerals supplement, Selenium, Potassium and Chrome bioaccessibility was studied. Results: The obtained results underline the good antioxidant, hypoglycemic, antihypertensive and hypolipidemic in vitro properties of the PDO Rotonda’s Red Eggplant extract. Moreover, the obtained data show a higher minerals bioaccessibility and this higher value could be ascribable to the natural phytocomplex of PDO Rotonda’s Red Eggplant, which increases the minerals bioaccessibility if compare it with a control sample. Conclusion: The obtained results show that PDO Rotonda’s Red Eggplant extract, might be used as a possible nutraceutical supplement, along with traditional therapies, both for its biological properties and for its minerals bioaccessibility value.


2019 ◽  
Vol 15 (4) ◽  
pp. 373-382 ◽  
Author(s):  
Ralph C. Gomes ◽  
Renata P. Sakata ◽  
Wanda P. Almeida ◽  
Fernando Coelho

Background: The most important cause of dementia affecting elderly people is the Alzheimer’s disease (AD). Patients affected by this progressive and neurodegenerative disease have severe memory and cognitive function impairments. Some medicines used for treating this disease in the early stages are based on inhibition of acetylcholinesterase. Population aging should contribute to increase the cases of patients suffering from Alzheimer's disease, thus requiring the development of new therapeutic entities for the treatment of this disease. Methods: The objective of this work is to identify new substances that have spatial structural similarity with donepezil, an efficient commercial drug used for the treatment of Alzheimer's disease, and to evaluate the capacity of inhibition of these new substances against the enzyme acetylcholinesterase. Results: Based on a previous results of our group, we prepared a set of 11 spirocyclohexadienones with different substitutions patterns in three steps and overall yield of up to 59%. These compounds were evaluated in vitro against acetylcholinesterase. We found that eight of them are able to inhibit the acetylcholinesterase activity, with IC50 values ranging from 0.12 to 12.67 µM. Molecular docking study indicated that the spirocyclohexadienone, 9e (IC50 = 0.12 µM), a mixedtype AChE inhibitor, showed a good interaction at active site of the enzyme, including the cationic (CAS) and the peripheral site (PAS). Conclusion: We described the first study aimed at investigating the biological properties of spirocyclohexadienones as acetylcholinesterase inhibitors. Thus, we have identified an inhibitor, which provided valuable insights for further studies aimed at the discovery of more potent acetylcholinesterase inhibitors.


2016 ◽  
Vol 16 (9) ◽  
pp. 1172-1183 ◽  
Author(s):  
Lamia Benguedouar ◽  
Mesbah Lahouel ◽  
Sophie C. Gangloff ◽  
Anne Durlach ◽  
Florent Grange ◽  
...  

Melanoma is the more dangerous skin cancer, and metastatic melanoma still carries poor prognosis. Despite recent therapeutic advances, prolonged survival remains rare and research is still required. Propolis extracts from many countries have attracted a great deal of attention for their biological properties. We here investigated the ability of an ethanolic extract of Algerian propolis (EEP) to control melanoma tumour growth when given to mice bearing B16F1melanoma tumour either as preventive or as therapeutic treatment. EEP given after tumour occurrence increased mice survival (+30%) and reduced tumour growth (-75%). This was associated with a decrease of the Mitotic Index (-75%) and of Ki-67 (-50%) expression. When given either before or both before and after tumour occurrence, EEP reduced tumour growth but without prolonging mice life. Isolation of B16F1 melanoma cells from resected tumour showed that preventive and curative EEP treatments reduced invasiveness by 55% and 40% respectively compared to control. Galangin, one of the most abundant flavonoids in propolis, significantly reduced the number of melanoma cells in vitro and induced autophagy/apoptosis dose dependently. In conclusion, we showed that EEP reduced melanoma tumour progression/dissemination and could extend mice lifespan when used as therapeutic treatment. Then, EEP may help patients with melanoma when used as a complementary therapy to classical treatment for which autophagy is not contraindicated.


2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


Inorganics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 128 ◽  
Author(s):  
Giglio ◽  
Rey

Technetium-99m has a rich coordination chemistry that offers many possibilities in terms of oxidation states and donor atom sets. Modifications in the structure of the technetium complexes could be very useful for fine tuning the physicochemical and biological properties of potential 99mTc radiopharmaceuticals. However, systematic study of the influence of the labelling strategy on the “in vitro” and “in vivo” behaviour is necessary for a rational design of radiopharmaceuticals. Herein we present a review of the influence of the Tc complexes’ molecular structure on the biodistribution and the interaction with the biological target of potential nitroimidazolic hypoxia imaging radiopharmaceuticals presented in the literature from 2010 to the present. Comparison with the gold standard [18F]Fluoromisonidazole (FMISO) is also presented.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2366
Author(s):  
Katarzyna Klimek ◽  
Katarzyna Tyśkiewicz ◽  
Malgorzata Miazga-Karska ◽  
Agnieszka Dębczak ◽  
Edward Rój ◽  
...  

Given the health-beneficial properties of compounds from hop, there is still a growing trend towards developing successful extraction methods with the highest yield and also receiving the products with high added value. The aim of this study was to develop efficient extraction method for isolation of bioactive compounds from the Polish “Marynka” hop variety. The modified two-step supercritical fluid extraction allowed to obtain two hop samples, namely crude extract (E1), composed of α-acids, β-acids, and terpene derivatives, as well as pure xanthohumol with higher yield than that of other available methods. The post-extraction residues (R1) were re-extracted in order to obtain extract E2 enriched in xanthohumol. Then, both samples were subjected to investigation of their antibacterial (anti-acne, anti-caries), cytotoxic, and anti-proliferative activities in vitro. It was demonstrated that extract (E1) possessed more beneficial biological properties than xanthohumol. It exhibited not only better antibacterial activity against Gram-positive bacteria strains (MIC, MBC) but also possessed a higher synergistic effect with commercial antibiotics when compared to xanthohumol. Moreover, cell culture experiments revealed that crude extract neither inhibited viability nor divisions of normal skin fibroblasts as strongly as xanthohumol. In turn, calculated selectivity indexes showed that the crude extract had from slightly to significantly better selective anti-proliferative activity towards cancer cells in comparison with xanthohumol.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3579
Author(s):  
Svetlana A. Popova ◽  
Evgenia V. Pavlova ◽  
Oksana G. Shevchenko ◽  
Irina Yu. Chukicheva ◽  
Aleksandr V. Kutchin

The pyrazoline ring is defined as a “privileged structure” in medicinal chemistry. A variety of pharmacological properties of pyrazolines is associated with the nature and position of various substituents, which is especially evident in diarylpyrazolines. Compounds with a chalcone fragment show a wide range of biological properties as well as high reactivity which is primarily due to the presence of an α, β-unsaturated carbonyl system. At the same time, bicyclic monoterpenoids deserve special attention as a source of a key structural block or as one of the pharmacophore components of biologically active molecules. A series of new diarylpyrazoline derivatives based on isobornylchalcones with different substitutes (MeO, Hal, NO2, N(Me)2) was synthesized. Antioxidant properties of the obtained compounds were comparatively evaluated using in vitro model Fe2+/ascorbate-initiated lipid peroxidation in the substrate containing brain lipids of laboratory mice. It was demonstrated that the combination of the electron-donating group in the para-position of ring B and OH-group in the ring A in the structure of chalcone fragment provides significant antioxidant activity of synthesized diarylpyrazoline derivatives.


Sign in / Sign up

Export Citation Format

Share Document