scholarly journals DURIAN SEED UTILIZATION AS A BASE MATERIAL OF TOPICAL GEL

2018 ◽  
Vol 11 (13) ◽  
pp. 174
Author(s):  
Nilsya Febrika Zebua ◽  
Effendy De Lux Putra ◽  
Urip Harahap ◽  
Jamaran Kaban

 Objective: This research is aimed to investigate that durian seed gum is potential as an excipient in topical drug delivery. Durian seed gum is isolated from low-cost source and usually discarded.Methods: A certain amount of durian seed gum was isolated and characterized by scanning electron microscopy energy dispersive X-ray (SEM-EDX) and infrared spectrophotometer. The isolation method is divided into centrifuge and heating method, and the results of both methods are compared in their ability to form a gel and their evaluation.Results: The infrared spectra of durian seed gum by centrifugal method indicate the presence of -OH, -COOH, -CH groups, and the addition of C=O and ester groups on the heating method, i.e., at wave number 1726.22 cm−1. SEM-EDX shows the form of hollow surface particles, and the elements contained are C, O, K, Cl, and Mg. Durian seed gum of both methods formed a gel with boiling water at a concentration of 5% giving transparent and non-flowing results.Conclusion: Durian seed gum by the heating method is a low-methoxyl pectin compound because it is extracted at an alkaline pH. Durian seed gum can form a gel and complete the gel evaluation requirements.

Author(s):  
D. J. Bailey ◽  
M. C. Stennett ◽  
J. Heo ◽  
N. C. Hyatt

AbstractSEM–EDX and Raman spectroscopy analysis of radioactive compounds is often restricted to dedicated instrumentation, within radiological working areas, to manage the hazard and risk of contamination. Here, we demonstrate application of WetSEM® capsules for containment of technetium powder materials, enabling routine multimodal characterisation with general user instrumentation, outside of a controlled radiological working area. The electron transparent membrane of WetSEM® capsules enables SEM imaging of submicron non-conducting technetium powders and acquisition of Tc Lα X-ray emission, using a low cost desktop SEM–EDX system, as well as acquisition of good quality μ-Raman spectra using a 532 nm laser.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1786
Author(s):  
Carla Queirós ◽  
Chen Sun ◽  
Ana M. G. Silva ◽  
Baltazar de Castro ◽  
Juan Cabanillas-Gonzalez ◽  
...  

The development of straightforward reproducible methods for the preparation of new photoluminescent coordination polymers (CPs) is an important goal in luminescence and chemical sensing fields. Isophthalic acid derivatives have been reported for a wide range of applications, and in addition to their relatively low cost, have encouraged its use in the preparation of novel lanthanide-based coordination polymers (LnCPs). Considering that the photoluminescent properties of these CPs are highly dependent on the existence of water molecules in the crystal structure, our research efforts are now focused on the preparation of CP with the lowest water content possible, while considering a green chemistry approach. One- and two-dimensional (1D and 2D) LnCPs were prepared from 5-aminoisophthalic acid and Sm3+/Tb3+ using hydrothermal and/or microwave-assisted synthesis. The unprecedented LnCPs were characterized by single-crystal X-ray diffraction (SCRXD), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), and their photoluminescence (PL) properties were studied in the solid state, at room temperature, using the CPs as powders and encapsulated in poly(methyl methacrylate (PMMA) films, envisaging the potential preparation of devices for sensing. The materials revealed interesting PL properties that depend on the dimensionality, metal ion, co-ligand used and water content.


2021 ◽  
Vol 22 (9) ◽  
pp. 4433
Author(s):  
Eun Sung Lee ◽  
Byung Seok Cha ◽  
Seokjoon Kim ◽  
Ki Soo Park

In recent years, fluorescent metal nanoclusters have been used to develop bioimaging and sensing technology. Notably, protein-templated fluorescent gold nanoclusters (AuNCs) are attracting interest due to their excellent fluorescence properties and biocompatibility. Herein, we used an exosome template to synthesize AuNCs in an eco-friendly manner that required neither harsh conditions nor toxic chemicals. Specifically, we used a neutral (pH 7) and alkaline (pH 11.5) pH to synthesize two different exosome-based AuNCs (exo-AuNCs) with independent blue and red emission. Using field-emission scanning electron microscopy, energy dispersive X-ray microanalysis, nanoparticle tracking analysis, and X-ray photoelectron spectroscopy, we demonstrated that AuNCs were successfully formed in the exosomes. Red-emitting exo-AuNCs were found to have a larger Stokes shift and a stronger fluorescence intensity than the blue-emitting exo-AuNCs. Both exo-AuNCs were compatible with MCF-7 (human breast cancer), HeLa (human cervical cancer), and HT29 (human colon cancer) cells, although blue-emitting exo-AuNCs were cytotoxic at high concentrations (≥5 mg/mL). Red-emitting exo-AuNCs successfully stained the nucleus and were compatible with membrane-staining dyes. This is the first study to use exosomes to synthesize fluorescent nanomaterials for cellular imaging applications. As exosomes are naturally produced via secretion from almost all types of cell, the proposed method could serve as a strategy for low-cost production of versatile nanomaterials.


2009 ◽  
Vol 16 (03) ◽  
pp. 381-386 ◽  
Author(s):  
J. B. CHU ◽  
H. B. ZHU ◽  
Z. A. WANG ◽  
Z. Q. BIAN ◽  
Z. SUN ◽  
...  

Single-phase CuInSe 2 films were grown by high vapor selenization of CuIn alloy precursors within a partially closed graphite box. The CuIn precursors were prepared using Cu x In y alloy targets with different composition rates under low vacuum level by a homemade sputtering system. The Cu and In composition rates of the used targets are 11:9, 10:10, and 9:11, respectively. The metallic precursor films were selenized using a two-step temperature profile, i.e. at 250°C and 400–500°C, respectively. The influence of the temperature at the second selenization step on the quality of the CIS absorbing layers was investigated. The CIS films were characterized by X-ray diffractometry, scanning electron microscopy, energy dispersive X-ray analysis, and Raman spectroscopy. The deposited CIS absorbers selenized at a high temperature of 500°C for 30 min exhibited a single-phase chalcopyrite structure with a preferential orientation in the (112) direction. These layers display uniform, large, and densely packed crystals with a grain size of about 3–5 μm. Cadmium sulfide buffer layer was manufactured by chemical bath deposition method. Bilayers ZnO / ZnO : Al were prepared by RF magnetron sputtering deposition. CIS solar cells with an efficiency of about 6.5% were produced without antireflective films. The method to fabricate CIS solar cells by a combination of the low vacuum sputtering deposition and the graphite box selenization process has provided a simple control process and shown a promising potential for developing high efficient and low-cost CuInSe 2 solar cells.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1617
Author(s):  
Silviu-Adrian Predoi ◽  
Carmen Steluta Ciobanu ◽  
Mikael Motelica-Heino ◽  
Mariana Carmen Chifiriuc ◽  
Monica Luminita Badea ◽  
...  

In the present study, a new low-cost bioceramic nanocomposite based on porous hydroxyapatite (HAp) and cetyl trimethyl ammonium bromide (CTAB) as surfactant was successfully obtained by a simple chemical co-precipitation. The composition and structure of the HAp-CTAB were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) spectrometer, and N2 adsorption/desorption analysis. The capacity of HAp-CTAB nanocomposites to remove the lead ions from aqueous solutions was studied by adsorption batch experiments and proved by Langmuir and Freundlich models. The Pb2+ removal efficiency of HAp-CTAB biocomposite was also confirmed by non-destructive ultrasound studies. The cytotoxicity assays showed that the HAp-CTAB nanocomposites did not induce any significant morphological changes of HeLa cells after 24 h of incubation or other toxic effects. Taken together, our results suggests that the obtained porous HAp-CTAB powder could be used for the decontamination of water polluted with heavy metals, such as Pb2+.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 329
Author(s):  
Pengmin Yan ◽  
Xue Zhao ◽  
Jiuhou Rui ◽  
Juan Zhao ◽  
Min Xu ◽  
...  

The internal defect is an important factor that could influence the energy and safety properties of energetic materials. RDX samples of two qualities were characterized and simulated to reveal the influence of different defects on sensitivity. The internal defects were characterized with optical microscopy, Raman spectroscopy and microfocus X-ray computed tomography technology. The results show that high-density RDX has fewer defects and a more uniform distribution. Based on the characterization results, defect models with different defect rates and distribution were established. The simulation results show that the models with fewer internal defects lead to shorter N-NO2 maximum bond lengths and greater cohesive energy density (CED). The maximum bond length and CED can be used as the criterion for the relative sensitivity of RDX, and therefore defect models doped with different solvents are established. The results show that the models doped with propylene carbonate and acetone lead to higher sensitivity. This may help to select the solvent to prepare low-sensitivity RDX. The results reported in this paper are aiming at the development of a more convenient and low-cost method for studying the influence of internal defects on the sensitivity of energetic materials.


1977 ◽  
Vol 16 (1) ◽  
pp. 94 ◽  
Author(s):  
Jay S. Pearlman ◽  
Robert F. Benjamin
Keyword(s):  
Low Cost ◽  
X Ray ◽  

2010 ◽  
Vol 18 (5) ◽  
pp. 28-31
Author(s):  
R.B. Simmons

In recent years there has been a virtual explosion in the world of art glass. New glass formulations have brought a host of new colors into the marketplace, and the availability of low-cost, high-quality torches and other tools has brought art glass to the hobbyist. In addition to burn risks and possible cutting injury, there are a number of less obvious hazards that should be known to novice glass workers. One of these is the presence of heavy metals in or on glass surfaces and possibly in the atmosphere immediately surrounding the work area, presenting both potential skin contact and inhalation hazards. This study examines the metallic surfaces generated on five glass colors commonly used in art glass jewelry.


2006 ◽  
Vol 39 (4) ◽  
pp. 626-629
Author(s):  
M. Jayaprakasan ◽  
V. Kannan ◽  
P. Ramasamy

X-ray powder diffraction is an established method for the qualitative identification of crystalline materials and their quantitative analysis. The new generation of X-ray diffraction systems are based on expensive digital/embedded control technology and computer interfaces. Yet many laboratories use conventional manual-controlled systems withXYstrip-chart recorders. Since the output spectrum is a strip chart (hard copy), raw data, essential for structural and qualitative analysis, are not readily available for further analysis. Upgrading to modern computerized diffractometers is very expensive. The proposed automation design described here is intended to enable the conventional diffractometer user to collect, store and analyze data quickly. The design also improves the resolution by five times compared with the conventional setup. For the automation, a PC add-on card has been designed to control and collect the timing and intensity counts from the conventional X-ray diffractometer, and suitable software has been developed to collect, process and present the X-ray diffraction data for both qualitative and quantitative analysis. Moreover, a major advantage of this design is that it does not warrant any physical modification of the hardware of the conventional setup; it is simply an extension to enhance the performance of collecting raw data with a higher resolution at desired intervals/timings.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 347
Author(s):  
Beomjin Kim ◽  
Woo Chang Song ◽  
Sun Young Park ◽  
Geuntae Park

The green synthesis of inorganic nanoparticles (NPs) using bio-materials has attained enormous attention in recent years due to its simple, eco-friendly, low-cost and non-toxic nature. In this work, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized by the marine algae extract, Sargassum serratifolium (SS). The characteristic studies of bio-synthesized SS-AgNPs and SS-AuNPs were carried out by using ultraviolet–visible (UV–Vis) absorption spectroscopy, dynamic light scattering (DLS), high-resolution transmission electron microscope (HR-TEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Phytochemicals in the algae extract, such as meroterpenoids, acted as a capping agent for the NPs’ growth. The synthesized Ag and Au NPs were found to have important catalytic activity for the degradation of organic dyes, including methylene blue, rhodamine B and methyl orange. The reduction of dyes by SS-AgNPs and -AuNPs followed the pseudo-first order kinetics.


Sign in / Sign up

Export Citation Format

Share Document