scholarly journals INVESTIGATION ON PHARMACOGNOSY OF KATHA POWDER AS WELL AS IT’S IN VITRO CYTOTOXIC ACTIVITY

Author(s):  
PANKAJ SHARMA

Objective: The present study delves into the investigation of quantitative phytochemical in Katha powder, and it is in vitro cytotoxic activity. Methods: Coarsely dried chips of Acacia catechu heartwood were treated with a 10% hydro-alcoholic solution to obtain Katha as the final product. The powdered Katha was standardized through pharmacognostic parameters. Phytochemical investigations were carried out to screen polyphenols (tannins and flavonoids) of interest which later were confirmed by thin-layer chromatography. The cytotoxicity effect of Katha powder on MCF-7, A431, and HepG2 cells was characterized by the trypan blue dye exclusion and MTT colorimetric assays technique. Control assay was carried out for samples containing only the appropriate volumes of blank solutions and showed no effect on cell growth. Different cells were exposed to Katha powder for about 48 h and performed cytotoxicity assays. The effect of Katha powder against these cell lines concentration range 10–100 μg/ml showed a decrease in percent cell viability in a dose-dependent manner, as compared with that of the control when examined by the trypan blue exclusion assay technique and MTT colorimetric assays technique. Results: Quantitative phytochemical investigations were showed that Katha is rich in the content of polyphenols (tannins and flavonoids) and having good pharmacological potential. The effect of Katha powder against these cell lines concentration range 10–100 μg/ml showed a decrease in percent cell viability in a dose-dependent manner. Conclusion: So from this investigation it is to be suggested that the Katha powder is rich in the phenolic compound and shows a good anticancer effect against MCF-7, A431, and HepG2 cells.

2020 ◽  
Author(s):  
Imen Kallel ◽  
Ahmed Bayoudh ◽  
Bochra Gargouri ◽  
Lamia Khannous ◽  
Asma Elaguel ◽  
...  

Abstract Background Salvia officinalis L. essential oil (SoEO) was mostly traditionally used to medicate various diseases as cancer. Then, the present work aims were: (1) to model the cytotoxicity effects of Salvia officinalis L. essential oil (SoEO) related to the human cancer cell lines kind (MCF-7 and HeLa) ; (2) to optimize the hydro-distillation extraction conditions of SoEO; and, (3) to determine the in vitro scavenging capacity of the free radicals DPPH•, NO•, ABTS+, and the ability to reduce Fe3+. Methods The cytotoxicity and anti-proliferative abilities were evaluated by measuring cell viability and then modeled. Two human cell lines: MCF-7 and HeLa were used. The optimization of SoEO extraction by hydro-distillation was carried out with Response Surface Methodology (RSM) using the Box–Behnken design Results The cytotoxicity activity against both tumor cell lines MCF-7 and HeLa was considerably important with IC50 = 3.125 and 8.920 µg/mL, respectively. All treated cell lines showed a significant reducing in cell viability in response to the increasing oil concentration. The relative behaviors of both cell lines under SoEO treatment were modeled. The obtained optimal extraction yield was Y = 1.85 g/100 g d.b. The main identified fractions were camphene (23.7%), α-thujone (19.62%), 1,8-cineole (10.6%), viridiflorol (5.9%), borneol (5.72%); β-thujone (5.4%); caryophyllene (3,83%). Also, SoEO was mostly able to scavenge DPPH• free radical, ABTS+ radical and hydrogen peroxide in an amount dependent manner (IC50 = 0.97, 0.279 and 0.05 mg/mL, respectively). Conclusion The present work provides a preliminary platform for further investigation of the possible mechanism of S. officinalis essential oils and their individual compounds in cytotoxic and antitumor activity.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Chong Li ◽  
Guangbin Huang ◽  
Fang Tan ◽  
Xianrong Zhou ◽  
Jianfei Mu ◽  
...  

The dry leaf of Apocynum venetum tea extracts (AVTEs) belonging to the Apocynaceae family is a traditional Chinese medicine. The aim of this study is to identify the bioactive components of AVTE and analyse its antioxidant and anticancer activity in vitro. Method. Flavones and polyphenols in AVTE were determined by high-performance liquid chromatography (HPLC) assay. The scavenging capacity of tea extracts to 1,1-diphenyl-2-picrylhydrazyl (DPPH); 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS); hydroxyl (OH); and superoxide anion-free radicals were investigated by spectrophotometry. We also detailed the cytotoxicity assay of AVTE (50, 100, and 200 μg/mL) to human embryonic kidney 293T cells, the protective effect of AVTE on 293T cells induced by hydrogen peroxide (0.3 mmol/L), and the anticancer effect against the human hepatoma HepG2 cells via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. We investigated the antioxidative effects of AVTE in human embryonic kidney 293T cells and the anticancer mechanism in HepG2 human hepatoma cells via quantitative real-time reverse transcription-polymerase chain reaction (RT-qPCR) assay. Results. HPLC analysis showed that AVTEs contain neochlorogenic acid, chlorogenic acid, rutin, isoquercetin, isochlorogenic acid B, astragalin, isochlorogenic acid C, rosmarinic acid, quercetin, and trans-cinnamic acid. These extracts have high antioxidant activity and dose-dependent relation through free radical scavenging experiments. The cell viability of 293T cells treated with hydrogen peroxide (0.3 mmol/L) was significantly lower than that of normal cells, and the cell viability of oxidatively stressed 293T cells after AVTE (50, 100, and 200 μg/mL) treatment was significantly improved (P<0.05). Moreover, cytotoxicity experiments showed that the survival rate of 293T cells was over 90%, but the proliferation of HepG2 cells was significantly inhibited in a dose-dependent manner by AVTE. Furthermore, cytoprotective effects in 293T cells were induced via upregulation of glutathione peroxidase (GSH-Px), GSH, superoxide dismutase (SOD), and catalase (CAT) antioxidant-related factors, as well as apoptosis in HepG2 cells was induced via upregulation of caspase-3, caspase-9, p21, and p53 apoptosis-associated factors, as assessed via mRNA expression levels after treatment with AVTE, which were consistent with the results of antioxidant gene detections. As a conclusion, AVTE appears to be an effectively functional drink, due to its rich functional components and antioxidant and anticancer activities.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Anita Wagh ◽  
Santosh Butle ◽  
Dipak Raut

Abstract Background Spathodea campanulata P. Beauv. known as the African tulip tree has potential medicinal properties that have been shown traditionally for the treatment of various ailments. The aim of the present study was isolation, identification, and evaluation of the cytotoxic activity of phytochemicals from the chloroform extract of S. campanulata. Result Three compounds were isolated by using column chromatography and preparative TLC from chloroform extract of leaves of S. campanulata. The structures of the isolated compounds were elucidated by using spectroscopic methods, including, FTIR, ESI-TOF MS, 1H NMR, and 13C NMR spectroscopy. In vitro cytotoxic activity of compounds was evaluated by using SRB assay against human leukemia cancer cell lines (HL-60). Results were expressed in IC50 values. Stigmasta-5,22-dien-3-ol, octadecenamide, and umbelliferone were isolated and identified from chloroform extract. The isolated compounds showed cytotoxicity with decreasing cell viability in a dose-dependent manner, but it was found low as compared to positive control, i.e., Adriamycin against HL-60 cell lines. Conclusion The results indicate that isolated compounds, i.e., stigmasta-5,22-dien-3-ol (44.12μg/ml), octadecenamide (35.65μg/ml), and umbelliferone (80.60μg/ml) showed antiproliferative activity, but it was low compared to positive control Adriamycin (10.09 μg/ml). Also, according to our knowledge, this study is the first report on the isolation and identification of octadecenamide and umbelliferone from the leaves of S. campanulata. Graphical abstract


2021 ◽  
Vol 11 (11) ◽  
pp. 5300
Author(s):  
Jozef Hudec ◽  
Jan Mojzis ◽  
Marta Habanova ◽  
Jorge A. Saraiva ◽  
Pavel Hradil ◽  
...  

Sarcopoterium spinosum (L.) is a medicinal plant traditionally used for the treatment of various diseases including cancer in the Near- and Middle East. The fractions and constituents of the ethanol extract of S. spinosum were screened for in vitro cytotoxic activities on Jurkat (acute T-lymphoblastic leukemia), HeLa (cervical adenocarcinoma), MCF-7 (mammary gland adenocarcinoma), Caco-2 (human colorectal adenocarcinoma), and MDA-MB-231 (mammary gland adenocarcinoma) cell lines using the MTT (3-(dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The ethanol extract was subsequently re-extracted with ethyl acetate and in its sub-fraction obtained by column chromatography three compounds (stachydrine, benzalkonium chloride and rutine) were the first time identified by nuclear magnetic resonance (NMR) analyses. The most active subfraction showed cytotoxic activity against HeLa, MCF-7, and Caco-2 cell lines. The three compounds mentioned, as standards of high-performance liquid chromatography (HPLC) quality, were studied individually and in combination. Cytotoxic activity observed might be due to the presence of benzalkonium chloride and rutin. Benzalkonium chloride showed the strongest growth suppression effect against HeLa cells (IC50 8.10−7 M) and MCF-7 cells (IC50 5.10−6 M). The mixture of stachydrine and benzalkonium chloride allowed a synergistic cytotoxic effect against all tested cancer and normal cells to be obtained. Anti-cancer activity of the plant extract of S. spinosum remains under-investigated, so this research describes how the three major compounds identified in the ethyl acetate extract can exert a significant dose dependent in vitro cytotoxicity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryota Ko ◽  
Masahiko Hayashi ◽  
Miho Tanaka ◽  
Tomoaki Okuda ◽  
Chiharu Nishita-Hara ◽  
...  

AbstractWe evaluated the effects of ambient particulate matter (PM) on the corneal epithelium using a reconstructed human corneal epithelium (HCE) model. We collected two PM size fractions [aerodynamic diameter smaller than 2.4 µm: PM0.3–2.4 and larger than 2.4 µm: PM>2.4] and exposed these tissues to PM concentrations of 1, 10, and 100 µg/mL for 24 h. After exposure, cell viability and interleukin (IL) IL-6 and IL-8 levels were determined, and haematoxylin and eosin and immunofluorescence staining of the zonula occludens-1 (ZO-1) were performed on tissue sections. In addition, the effects of a certified reference material of urban aerosols (UA; 100 µg/mL) were also examined as a reference. The viability of cells exposed to 100 μg/mL UA and PM>2.4 decreased to 76.2% ± 7.4 and 75.4% ± 16.1, respectively, whereas PM0.3–2.4 exposure had a limited effect on cell viability. These particles did not increase IL-6 and IL-8 levels significantly even though cell viability was decreased in 100 μg/mL UA and PM>2.4. ZO-1 expression was reduced in a dose-dependent manner in all groups. Reconstructed HCE could be used as an in vitro model to study the effects of environmental PM exposure on ocular surface cell viability and inflammation.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2178
Author(s):  
Fabio Morandi ◽  
Veronica Bensa ◽  
Enzo Calarco ◽  
Fabio Pastorino ◽  
Patrizia Perri ◽  
...  

Neuroblastoma (NB) is the most common extra-cranial solid tumor of pediatric age. The prognosis for high-risk NB patients remains poor, and new treatment strategies are desirable. The olive leaf extract (OLE) is constituted by phenolic compounds, whose health beneficial effects were reported. Here, the anti-tumor effects of OLE were investigated in vitro on a panel of NB cell lines in terms of (i) reduction of cell viability; (ii) inhibition of cell proliferation through cell cycle arrest; (iii) induction of apoptosis; and (iv) inhibition of cell migration. Furthermore, cytotoxicity experiments, by combining OLE with the chemotherapeutic topotecan, were also performed. OLE reduced the cell viability of NB cells in a time- and dose-dependent manner in 2D and 3D models. NB cells exposed to OLE underwent inhibition of cell proliferation, which was characterized by an arrest of the cell cycle progression in G0/G1 phase and by the accumulation of cells in the sub-G0 phase, which is peculiar of apoptotic death. This was confirmed by a dose-dependent increase of Annexin V+ cells (peculiar of apoptosis) and upregulation of caspases 3 and 7 protein levels. Moreover, OLE inhibited the migration of NB cells. Finally, the anti-tumor efficacy of the chemotherapeutic topotecan, in terms of cell viability reduction, was greatly enhanced by its combination with OLE. In conclusion, OLE has anti-tumor activity against NB by inhibiting cell proliferation and migration and by inducing apoptosis.


2018 ◽  
Vol 19 (10) ◽  
pp. 3179 ◽  
Author(s):  
Hongling Gu ◽  
Na Li ◽  
Jiangkun Dai ◽  
Yaxi Xi ◽  
Shijun Wang ◽  
...  

A series of novel bivalent β-carboline derivatives were designed and synthesized, and in vitro cytotoxicity, cell apoptosis, and DNA-binding affinity were evaluated. The cytotoxic results demonstrated that most bivalent β-carboline derivatives exhibited stronger cytotoxicity than the corresponding monomer against the five selected tumor cell lines (A549, SGC-7901, Hela, SMMC-7721, and MCF-7), indicating that the dimerization at the C3 position could enhance the antitumor activity of β-carbolines. Among the derivatives tested, 4B, 6i, 4D, and 6u displayed considerable cytotoxicity against A549 cell line. Furthermore, 4B, 6i, 4D, and 6u induced cell apoptosis in a dose-dependent manner, and caused cell cycle arrest at the S and G2/M phases. Moreover, the levels of cytochrome C in mitochondria, and the expressions of bcl-2 protein, decreased after treatment with β-carbolines, which indicated that 6i and 6u could induce mitochondria-mediated apoptosis. In addition, the results of UV-visible spectral, thermal denaturation, and molecular docking studies revealed that 4B, 6i, 4D, and 6u could bind to DNA mainly by intercalation.


2020 ◽  
Vol 13 (9) ◽  
pp. 208
Author(s):  
Min-Hee Kim ◽  
Tae Hyeong Lee ◽  
Jin Soo Lee ◽  
Dong-Jun Lim ◽  
Peter Chang-Whan Lee

Hypoxia-inducible factor (HIF)-1α plays an important role in cancer progression. In various cancers, including thyroid cancer, overexpression of HIF-1α is related to poor prognosis or treatment response. However, few studies have investigated the role of HIF-1α inhibition in thyroid cancer progression. We evaluated the utility of the HIF-1α inhibitor IDF-11774 in vitro utilizing two thyroid cancer cell lines, K1 and BCPAP. Both cell lines were tested to elucidate the effects of IDF-11774 on cell proliferation and migration using soft agar and invasion assays. Here, we found that a reduction of HIF-1α expression in BCPAP cells was observed after treatment with IDF-11774 in a dose-dependent manner. Moreover, cell proliferation, migration, and anchorage-independent growth were effectively inhibited by IDF-11774 in BCPAP cells but not in K1 cells. Additionally, invasion of BCPAP but not K1 cells was controlled with IDF-11774 in a dose-dependent manner. Our findings suggest that promoting the degradation of HIF-1α could be a strategy to manage progression and that HIF-1α inhibitors are potent drugs for thyroid cancer treatment.


Author(s):  
Phani Kumar Kola ◽  
Shyam Prasad K ◽  
Lakshmi Sudeepthi N ◽  
R.CH.Sekhara Reddy D ◽  
Abdul Rahaman Sk ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 345
Author(s):  
Xi-Feng Jin ◽  
Gerald Spöttl ◽  
Julian Maurer ◽  
Svenja Nölting ◽  
Christoph Josef Auernhammer

Background and aims: Inhibition of Wnt/β-catenin signaling by specific inhibitors is currently being investigated as an antitumoral strategy for various cancers. The role of Wnt/β-catenin signaling in neuroendocrine tumors still needs to be further investigated. Methods: This study investigated the antitumor activity of the porcupine (PORCN) inhibitor WNT974 and the β-catenin inhibitor PRI-724 in human neuroendocrine tumor (NET) cell lines BON1, QGP-1, and NCI-H727 in vitro. NET cells were treated with WNT974, PRI-724, or small interfering ribonucleic acids against β-catenin, and subsequent analyses included cell viability assays, flow cytometric cell cycle analysis, caspase3/7 assays and Western blot analysis. Results: Treatment of NET cells with WNT974 significantly reduced NET cell viability in a dose- and time-dependent manner by inducing NET cell cycle arrest at the G1 and G2/M phases without inducing apoptosis. WNT974 primarily blocked Wnt/β-catenin signaling by the dose- and time-dependent downregulation of low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation and non-phosphorylated β-catenin and total β-catenin, as well as the genes targeting the latter (c-Myc and cyclinD1). Furthermore, the WNT974-induced reduction of NET cell viability occurred through the inhibition of GSK-3-dependent or independent signaling (including pAKT/mTOR, pEGFR and pIGFR signaling). Similarly, treatment of NET cells with the β-catenin inhibitor PRI-724 caused significant growth inhibition, while the knockdown of β-catenin expression by siRNA reduced NET tumor cell viability of BON1 cells but not of NCI-H727 cells. Conclusions: The PORCN inhibitor WNT974 possesses antitumor properties in NET cell lines by inhibiting Wnt and related signaling. In addition, the β-catenin inhibitor PRI-724 possesses antitumor properties in NET cell lines. Future studies are needed to determine the role of Wnt/β-catenin signaling in NET as a potential therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document