scholarly journals A MILP Model for Water Level Sensor Placement with Multi-Sensor and Multi-Disaster Areas

2021 ◽  
Vol 22 (2) ◽  
pp. 185-195
Author(s):  
Prudensy F Opit ◽  
Indah Yessi Kairupan ◽  
Fribianty M Rusuh

A water level sensor is critical to measure water levels at strategic points in the river.  The sensor location directly impacts the quality of the collected data sent to the flood early warning system. To prevent and minimize the risk of flooding, it is crucial to determine the optimal locations for water level sensor placement. This research proposes a Mixed-Integer Linear Programming (MILP) model for water level sensor placement considering multi-sensor and multi-disaster areas. In addition, this model was applied in a case study in Tikala River, Manado, Indonesia.  The results indicated that all disaster areas could be covered by at least one single sensor. A sensitivity analysis was performed by running the model under several different budget scenarios.  When the budget increases, the number of sensors and the coverage performance are getting larger. Thus, the proposed MILP model was able to determine the optimal locations for sensor placement under a limited budget.

2018 ◽  
Vol 197 ◽  
pp. 16003
Author(s):  
Aris Haris Rismayana ◽  
Castaka Agus Sugianto ◽  
Ida Bagus Budiyanto

When the rainy season arrives, flooding is a common phenomenon. Almost every street, housing, village, river, even in the city center, wherever floods can occur. One effort to prevent the flooding is to create a floodgate on reservoirs or dams that are used to control the water distribution. The water level at this dam must be checked frequently to anticipate if the water level is at a dangerous level. The inspection of water levels will be very difficult if it must be conducted by humans who must be available in the field at any time. This research aims to create a prototype system that can replace the human role in monitoring the dam water level condition at any time by developing an integrated system between hardware and software using IoT (Internet of Things) technology approach and social media (twitter and telegram). The developed system consists of the height sensor (distance), microcontroller and wifi module, which is placed on the water gate. This system serves to measure the water level at any time and send data in real time to the server. The results of system testing performed shows that when the system is in normal circumstances, the system sends data to the server every minute, and updates the status of water level in twitter every 5 minutes. In case the water level has exceeded a predetermined limit, the system sends data to the server every 5 seconds and passes the warning message to all registered telegram contacts.


2020 ◽  
Vol 4 (1) ◽  
pp. 230-235
Author(s):  
Novianda Nanda Nanda ◽  
Rizalul Akram ◽  
Liza Fitria

During the rainy season, several regions in Indonesia experienced floods even to the capital of Indonesia also flooded. Some of the causes are the high intensity of continuous rain, clogged or non-smooth drainage, high tides to accommodate the flow of water from rivers, other causes such as forest destruction, shallow and full of garbage and other causes. Every flood disaster comes, often harming the residents who experience it. The late anticipation from the community and the absence of an early warning system or information that indicates that there will be a flood so that the community is not prepared to face floods that cause a lot of losses. Therefore it is necessary to have a detection system to provide early warning if floods will occur, this is very important to prevent material losses from flooded residents. From this problem the researchers designed an internet-based flood detection System of Things (IoT). This tool can later be controlled via a smartphone remotely and can send messages Telegram messenger to citizens if the detector detects a flood will occur.Keywords: Flooding, Smartphone, Telegram messenger, Internet of Thing (IoT).


2021 ◽  
Vol 14 (12) ◽  
pp. 55-65
Author(s):  
Anant Patel ◽  
Sanjay Yadav

Most of the natural disasters are unpredictable, but the most frequent occurring catastrophic event over the globe is flood. Developing countries are severely affected by the floods because of the high frequencies of floods. The developing countries do not have good forecasting system compared to the developed country. The metro cities are also settled near the coast or river bank which are the most vulnerable places to floods. This study proposes plan for street level flood monitoring and warning system for the Surat city, India. Waterlogging happens in the low lying area of the Surat city due to heavy storm and heavy releases from the Ukai dam. The high releases from upstream Ukai dam and heavy rainfall resulted into flooding in the low lying area of the Surat city. This research proposed a wireless water level sensor network system for the street water level flood monitoring. The system is proposed to monitor the water levels of different areas of city through the wireless water level sensors as well as to capture live photos using CCTV camera. This will help authority not only to issue flood warning but also to plan flood mitigation measures and evacuation of people.


2020 ◽  
Author(s):  
Robert Sämann ◽  
Thomas Graf ◽  
Insa Neuweiler

<p><span>Early warning systems for floods in urban areas should forecast water levels and damage estimation to protect vulnerable regions. To estimate the danger of a flood for buildings and people, the energy of the flood has to be taken into account additionally to the water level. The energy is related to the flow velocity. For directing rescue workers or trace spreading of contaminants through flooded streets, a high resolution of the water’s energy in space and time is required. Direct numerical run-off calculation is too slow for a flood forecast in time. Therefore a database with pre-calculated events is needed and a method to select the water levels and velocity fields that are similar to a forecasted rain event. </span></p><p><span>We present a method, how to create a real-time forecast based on pre-calculated data. The selection and weighting of the pre-calculated data is based on the precipitation pattern in the flood region. A nearest neighbor approach is applied to find water levels and velocity fields from a database that are similar to the forecasting event. For the ranking of similarity, different new metrics are compared against each other. The quality of the metrics is tested with a new approach of comparing velocity fields on the surface and in the pipe system. Considering both domains is crucial for understanding the complex dynamic flow paths on the surface. An urban catchment of 5 km² with high resolution (~3 m³) triangular surface mesh and connected drainage system is used for a hydrodynamic run-off simulation. The 1D-2D coupled software HYSTEM EXTRAN is used to generate the water levels and velocity fields for strong rainfall events of the past 20 years. More than 900 events with a duration between 15 minutes and 24 hours and return periods between 10 and 100 years were calculated and stored as the “pre-calculated” dataset.</span></p><p><span>For comparing two events, the mean square error is calculated between the precipitation patterns with different approaches to select the start index and number of intervals. This number depends on the hydraulic response time, the temporal resolution and the length of the reference pattern. The quality of the nearest neighbor selection is quantified using the Nash–Sutcliffe model efficiency coefficient of pipe flow and the root mean square error of water level and velocity in significant surface cells. Additionally, the transport paths of artificial contamination spills are compared between the events to show the reproducibility of velocity fields for each metric. </span></p><p><span>Results show that the reaction time and the wetting state of the surface is very important. Single cell values correspond well between a forecasted and a dataset event. However, complex transport paths have a very high variability that is not reproducible with similar events. Further research is required to clarify if this is a result of the random walk approach or of the injection time of the particles. </span></p>


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Diego Arosio ◽  
Stefano Munda ◽  
Greta Tresoldi ◽  
Monica Papini ◽  
Laura Longoni ◽  
...  

AbstractThis work is based on the assumption that a resistivity meter can effectively monitor water saturation in earth levees and can be used as a warning system when saturation exceeds the expected seasonal maxima. We performed time-lapse ERT measurements to assess the capability of this method to detect areas where seepage is critical. These measurements were also very useful to design a prototype monitoring system with remarkable savings by customizing the specifications according to field observations. The prototype consists of a remotely controlled low-power resistivity meter with a spread of 48 stainless steel 20 × 20 cm plate electrodes buried at half-meter depth. We deployed the newly-designed permanent monitoring system on a critical levee segment. A weather station and an ultrasonic water level sensor were also installed in order to analyse the correlation of resistivity with temperature, rainfalls and water level seasonal variations.The preliminary analysis of the monitoring data shows that the resistivity maps follow a very reasonable trend related with the saturation/drying cycle of the levee caused by the seasonal variations of the water level in the irrigation channel. Sharp water level changes cause delayed and smooth resistivity variations. Rainfalls and, to a lesser extent, temperature seem to have an influence on the collected data but effects are apparently negligible beyond 1 m depth. The system is currently operating and results are continuously monitored.


2021 ◽  
Vol 1 ◽  
pp. 45-49
Author(s):  
Latiful Hayat ◽  
Dian Nova Kusuma Hardani

Floods and their problems show an increasing indication when rainfall is high. Data from BNPB shows that floods, landslides and tornadoes contributed to the total disasters in Indonesia in a decade. The existence of an early warning flood disaster can help evacuate before a disaster strikes. The system requires a water level detector as the basic data for determining flood predictions. In order to get the water level value, a touch water method can be used using electrodes or without touching the water with the help of pressure sensors, ultrasonic and imaging. Each method has advantages over the other. In this study, the effectivity and accuracy of detecting water levels were investigated using 3 methods: the direct touch of water through nickel wire, buoys with encoder, and pressure sensors. Detection of water levels can be used as a reference to obtain river water level data which is then connected via an IoT or internet connection as a reference for the Early Warning System for the arrival of floods. This study found that changes in water level of less than 30 cm can utilize buoys and encoders with an accuracy of detecting 5 to 6 counts per 1 mm increase in water level. Meanwhile, the measurement of less than 30 cm water level using nickel wire resulted in a non-linear value. The utilization of nickel wire can be used for a height of more than 30 cm where the change in resistivity has started to be linear. ADC change value is 2.93 mV/cm using 10 bit ADC at 5 Volt reference voltage. For water level heights of 50 cm and above, a pressure sensor can use a pressure sensor that can detect changes in pressure of 0.002 in Hg/mm or 0.05 mmHg/mm.


The objectives of this research were to design and develop an automatic water level warning system for communities living along Khlong Lad Phrao (Lad Phrao Canal) in Bangkok. The development of the system was divided into the following four main parts: 1) a water level measurement system; 2) a precipitation measurement system; 3) a water quality testing system covering dissolved oxygen, pH, turbidity and electrical conductivity and 4) an internet alert system utilizing the LINE application and web-based application information display. The first three parts were to be solar-powered. The design and development effort showed that the system successfully measured water levels along with water quality with speed and precision. Moreover, the system was easy to measure results and was able to alert through the LINE application when water in Khlong Lad Phrao approached critical levels, thereby reducing damage from water levels. Precision testing of the developed water level and quality measurement systems found that precision was in the range of 99.74-99.77%.


2021 ◽  
Vol 1 (2) ◽  
pp. 1-7
Author(s):  
Mr. G. M. Barbade ◽  
◽  
Mr. Shreyas Narendra Chandurkar ◽  
Mr. Vedant Shudhakar Shounak ◽  
Mr. Vaibhav Ram Nimkar ◽  
...  

In this project, we have worked with an indicator on an automatic water level controller. When we looked up our topic on the internet, we realized that most of the projects used microcontrollers or IC 555, but we didn't include any of these circuits in our model. Our design is based on the LM324N IC, which functions as a rectifier, oscillator, and comparator. On this foundation, we construct our circuit, and our model is successfully executed at a minimal cost. The project's goal is to conserve water. Water is a necessary component of our daily life. Water plays a vital role in our everyday life since there is not any water we can't imagine in our lives. Water is essential for digestion and plays some important roles in the body, such as waste removal, body temperature control, and nutrient transport. Our daily lives began in the upper tank that is the most crucial part of all the houses. Water in your house, including drinking, cooking, bathing, cleaning, and washing, is used almost for all purposes. Appliances such as washing machines and scrubbers require continuous flow. Inhouse, overhead tanks comply with those requirements. As a result, saving water for humans is important. This problem can be solved by using an automatic water level controller and indicator. The water level controller's operation is based on the fact that water conducts electricity due to the minerals in it. So As a result, the circuit can be opened or closed using water. The various circuits in the control unit send out different signals as the water level rises or falls. These signals are used to turn ON or OFF the motor pump depending on our requirements. I'm going to install an automatic water level controller so we don't have to manually turn the motor ON and OFF. The unit tracks the water level and then activates the relay, which activates the Motor. The LM324N IC, carbon level sensor, and relay are the key components in this unit. With this project, we will be able to automatically monitor water wastage and maintain water levels in various systems, such as water tanks, boilers, swimming pools, and so on. Water and energy losses are reduced as a result of this. This also saves manpower because it is no longer necessary to run it manually.


2016 ◽  
Vol 16 (1) ◽  
pp. 209-222 ◽  
Author(s):  
M. D. Harley ◽  
A. Valentini ◽  
C. Armaroli ◽  
L. Perini ◽  
L. Calabrese ◽  
...  

Abstract. The Emilia-Romagna early-warning system (ER-EWS) is a state-of-the-art coastal forecasting system that comprises a series of numerical models (COSMO, ROMS, SWAN and XBeach) to obtain a daily 3-day forecast of coastal storm hazard at eight key sites along the Emilia-Romagna coastline (northern Italy). On the night of 31 October 2012, a major storm event occurred that resulted in elevated water levels (equivalent to a 1-in-20- to 1-in-50-year event) and widespread erosion and flooding. Since this storm happened just 1 month prior to the roll-out of the ER-EWS, the forecast performance related to this event is unknown. The aim of this study was to therefore reanalyse the ER-EWS as if it had been operating a day before the event and determine to what extent the forecasts may have helped reduce storm impacts. Three different reanalysis modes were undertaken: (1) a default forecast (DF) mode based on 3-day wave and water-level forecasts and default XBeach parameters; (2) a measured offshore (MO) forecast mode using wave and water-level measurements and default XBeach parameters; and (3) a calibrated XBeach (CX) mode using measured boundary conditions and an optimized parameter set obtained through an extensive calibration process. The results indicate that, while a "code-red" alert would have been issued for the DF mode, an underprediction of the extreme water levels of this event limited high-hazard forecasts to only two of the eight ER-EWS sites. Forecasts based on measured offshore conditions (the MO mode) more-accurately indicate high-hazard conditions for all eight sites. Further considerable improvements are observed using an optimized XBeach parameter set (the CX mode) compared to default parameters. A series of what-if scenarios at one of the sites show that artificial dunes, which are a common management strategy along this coastline, could have hypothetically been constructed as an emergency procedure to potentially reduce storm impacts.


2021 ◽  
Vol 13 (24) ◽  
pp. 4977
Author(s):  
Shuangshuang Wu ◽  
Xinli Hu ◽  
Wenbo Zheng ◽  
Matteo Berti ◽  
Zhitian Qiao ◽  
...  

The triggering threshold is one of the most important parameters for landslide early warning systems (EWSs) at the slope scale. In the present work, a velocity threshold is recommended for an early warning system of the Gapa landslide in Southwest China, which was reactivated by the impoundment of a large reservoir behind Jinping’s first dam. Based on GNSS monitoring data over the last five years, the velocity threshold is defined by a novel method, which is implemented by the forward and reverse double moving average of time series. As the landslide deformation is strongly related to the fluctuations in reservoir water levels, a crucial water level is also defined to reduce false warnings from the velocity threshold alone. In recognition of the importance of geological evolution, the evolution process of the Gapa landslide from topping to sliding is described in this study to help to understand its behavior and predict its potential trends. Moreover, based on the improved Saito’s three-stage deformation model, the warning level is set as “attention level”, because the current deformation stage of the landslide is considered to be between the initial and constant stages. At present, the early warning system mainly consists of six surface displacement monitoring sites and one water level observation site. If the daily recorded velocity in each monitoring site exceeds 4 mm/d and, meanwhile, the water level is below 1820 m above sea level (asl), a warning of likely landslide deformation accelerations will be released by relevant monitoring sites. The thresholds are always discretely exceeded on about 3% of annual monitoring days, and they are most frequently exceeded in June (especially in mid-June). The thresholds provide an efficient and effective way for judging accelerations of this landslide and are verified by the current application. The work presented provides critical insights into the development of early warning systems for reservoir-induced large-scale landslides.


Sign in / Sign up

Export Citation Format

Share Document