scholarly journals Evaluation of in-vitro antioxidant potential and in-vivo hepatoprotective activity of root extract of Quercus oblongata D. DON

2018 ◽  
Vol 8 (5-s) ◽  
pp. 152-161 ◽  
Author(s):  
Anita Singh ◽  
Manoj Bisht

Objective: The main potential target is attempt to investigated evaluation of in-vitro antioxidant potential and in-vivo hepatoprotective activity of root extract of Quercus oblongata D. DON belonging to family fagaceae. Material & Methods: The root of plant was extracted by different solvents like n-hexane (NHEQO), Chloroform (CEQO), Ethyl acetate (EAQO) Hydroethanolic (HEEQO) and Ethanol (EEQO). The antioxidant activity (AA) was determined by the possible four complementary test assay methods namely total phenolic content, total flavonoids content, Inhibition of  2,2 diphenyl -1 picrylhydrazyl (DPPH) radicals and ABTS (2-2’- azinobis) radical scavenging activity or quenching activity, in the hepatoprotective experimental  animal albino wistar rats (120-180gm) were divided into 6 group, each group content 5, Group I: Received distilled water (5ml/kg. p.o) once daily, and served as normal control. Group II: Received paracetamol suspension (640 mg/kg suspended in 1% methyl cellulose; orally as toxin control. Group III: Received standard drug Silymarin (25 mg/kg. p.o.) + paracetamol suspension (640 mg/kg suspended in 1% methyl cellulose; orally once daily Group IV, V, VI administered HEECB at different doses300, 400, 500 mg/kg orally + paracetamol suspension (640 mg/kg suspended in 1% methyl cellulose; for 21 days. And collect blood from experimental animals by retrorbital puncture for estimation of biochemical parameters and other parameter also evaluate like physical histological changes in livers of rats. Results: Experimental finding reveal that Paracetamol produce significant change in physical (increase liver weight) biochemical (increase alkaline phosphate, serum glutamic oxalacetic transaminase, serum glutamic pyuruvic transaminase, total protein, total bilirubin, direct bilirubin and decrease the level of total protein and albumin) histological (damage to hepatocyte) and in liver parameters. Pretreatment with extract significantly minimization of physical, biochemical, histological and functional change induced by Paracetamol in liver. Conclusion: Experimental data and analysis of different parameter declare that hydroethanolic extract of Quercus oblongata could be a useful hepatoprotective agents and antioxidant potential. Keywords: Clematis buchananiana, paracetamol, hepatoprotective, alkaline phosphate, serum glutamic oxalacetic transaminase, serum glutamic pyuruvic transaminase.

INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (04) ◽  
pp. 50-56
Author(s):  
K Ravishankar ◽  
Y.V.V.M. Lakshmi Prasanna ◽  
G.V.N. Kiranmayi ◽  

In vitro antioxidant and in vivo hepatoprotective activities of Cleome gynandra ethanolic leaf and root extracts were assessed. In vitro antioxidant activity was carried by DPPH, Nitric oxide, hydroxyl radical and phosphomolybdenum assays. Hepatoprotective activity was evaluated by Carbon tetrachloride (CCl4) induced hepatotoxicity in albino rats.The animals were divided into seven groups (Four test groups - Ethanolic Leaf and Root Extracts of Cleome gynandra of 100 mg/kg and 200 mg/kg, standard silymarin (100 mg/kg), toxic control-carbon tetrachloride and vehicle). On the eight day, the blood was collected and parameters like serum glutamic oxaloacetic transaminase (SGOT), Serum glutamic pyruvic transaminase (SGPT), Alkaline phosphatase (ALP) and Total bilirubin (TB) were estimated. Significant antioxidant status with good IC50 values similar to standard ascorbic acid was obtained. A significant decrease in liver enzymes was observed in test groups comparable to silymarin. From the results obtained, ethanolic leaf extract has contributed better hepatoprotection compared with root extract in experimental rats.


2018 ◽  
pp. 135-140 ◽  
Author(s):  
Ali Ramazani ◽  
Mahdi Tavakolizadeh ◽  
Samira Ramazani ◽  
Hamidreza Kheiri- Manjili ◽  
Mehdi Eskandari

Background: Development of resistance against the frontline anti-malarial drugs has created an alarming situation, which requires intensive drug discovery to develop new, more effective, affordable and accessible anti-malarial agents. The aim of this study was to assess antiplasmodial activity of the different fractions of root extract of Glycyr­rhiza glabra. Methods: Roots of G. glabra were collected from Tarom district of Zanjan Province in 2016 and then dried root ma­terial was chopped and consecutively extracted by the percolation method using solvents of different polarity. Result­ing extracts were assessed for in vitro and in vivo anti-malarial and cell cytotoxicity activities. Results: Among the three different solvent fractions studied, water-methanol and ethyl acetate fractions showed promising in vitro antiplasmodial activity against CQ-sensitive Plasmodium falciparum 3D7 strain (IC50= 9.95 and 13µg/ml, respectively). Further, the selectivity indices (HeLa cells versus P. falciparum) for the promising water-methanol fraction showed selectivity for P. falciparum and potential safer therapy for human. Interestingly, water-methanol and ethyl acetate fractions showed a significant suppression of parasite growth (72.2% and 65%, respec­tively) in comparison with control group in mice infected with P. berghei (P< 0.05). Conclusion: The promising antiplasmodial activity of the aqueous fraction of G. glabra obtained in our study war­rant bioassay-guided fractionation of this fraction to identify active principles responsible for antiplasmodial activity.


1990 ◽  
Vol 29 (03) ◽  
pp. 120-124
Author(s):  
R. P. Baum ◽  
E. Rohrbach ◽  
G. Hör ◽  
B. Kornhuber ◽  
E. Busse

The effect of triiodothyronine (T3) on the differentiation of cultured neuroblastoma (NB) cells was studied after 9 days of treatment with a dose of 10-4 M/106 cells per day. Using phase contrast microscopy, 30-50% of NB cells showed formation of neurites as a morphological sign of cellular differentiation. The initial rise of the mitosis rate was followed by a plateau. Changes in cyclic nucleotide content, in the triphosphates and in the activity of the enzyme ornithine decarboxylase (ODC) were assessed in 2 human and 2 murine cell lines to serve as biochemical parameters of the cell differentiation induced by T3. Whereas the cAMP level increased significantly (3 to 7 fold compared with its initial value), the cGMP value dropped to 30 to 50% of that of the control group. ATP and GTP increased about 200%, the ODC showed a decrease of about 50%. The present studies show a biphasic effect of T3 on neuroblastoma cells: the initial rise of mitotic activity is followed by increased cell differentiation starting from day 4 of the treatment.


2020 ◽  
Author(s):  
K. Zerrouki ◽  
N. Djebli ◽  
L. Gadouche ◽  
I. Erdogan Orhan ◽  
F. SezerSenol Deniz ◽  
...  

Nowadays, because of the industrialization, a lot of contaminant were available ; the consequences of this availability are apparition of diseases including neurodegeneration. Neurodegenerative diseases of the human brain comprise a variety of disorders that affect an increasing percentage of the population. This study is based on the effect of the Boswellic resin, which is from a medicinal plant and known for its antioxidant effects on nerve cell damage. The objective of this work was to evaluate the in vitro and in vivo effects of the Boswellic resin on anticholinesterase activity and Alzheimer’s disease (AD) induced by D-galactose and aluminum tetrachloride in Swiss mice. Chemical composition of the resin essential oil was identified by the CG-MS analysis. The antioxidant activity was also assessed by the DMPD and metal chelation methods. In order to understand the mechanism of memory improvement, the acetylcholinesterase, AChE, and butyrylcholinesterase, BChE, inhibitory assays were performed. In vivo part of the study was achieved on Swiss mice divided into four groups: control, AD model, treated AD, and treated control group. The identification of chemical composition by CG-MS reach the 89.67% of the total extract compounds presented some very important molecules (p-Cymene, n-Octyl acetate, α-Pinene…). The present study proves that Boswellic resin improves memory and learning in treated Alzheimer’s group, modulates the oxidative stress and be involved in the protective effect against amyloid deposition and neurodegeneration, and stimulates the immune system in mice’s brain.


2020 ◽  
Vol 22 (1) ◽  
pp. 233
Author(s):  
Eunkuk Park ◽  
Chang Gun Lee ◽  
Eunguk Lim ◽  
Seokjin Hwang ◽  
Seung Hee Yun ◽  
...  

Osteoporosis is a common disease caused by an imbalance of processes between bone resorption by osteoclasts and bone formation by osteoblasts in postmenopausal women. The roots of Gentiana lutea L. (GL) are reported to have beneficial effects on various human diseases related to liver functions and gastrointestinal motility, as well as on arthritis. Here, we fractionated and isolated bioactive constituent(s) responsible for anti-osteoporotic effects of GL root extract. A single phytochemical compound, loganic acid, was identified as a candidate osteoprotective agent. Its anti-osteoporotic effects were examined in vitro and in vivo. Treatment with loganic acid significantly increased osteoblastic differentiation in preosteoblast MC3T3-E1 cells by promoting alkaline phosphatase activity and increasing mRNA expression levels of bone metabolic markers such as Alpl, Bglap, and Sp7. However, loganic acid inhibited osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. For in vivo experiments, the effect of loganic acid on ovariectomized (OVX) mice was examined for 12 weeks. Loganic acid prevented OVX-induced bone mineral density loss and improved bone structural properties in osteoporotic model mice. These results suggest that loganic acid may be a potential therapeutic candidate for treatment of osteoporosis.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2529
Author(s):  
Haeyeop Kim ◽  
Woo Seok Yang ◽  
Khin Myo Htwe ◽  
Mi-Nam Lee ◽  
Young-Dong Kim ◽  
...  

Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.


Author(s):  
Joon M. Jung ◽  
Hae K. Yoon ◽  
Chang J. Jung ◽  
Soo Y. Jo ◽  
Sang G. Hwang ◽  
...  

Cold plasma can be beneficial for promoting skin wound healing and has a high potential of being effectively used in treating various wounds. Our aim was to verify the effect of cold plasma in accelerating wound healing and investigate its underlying mechanism in vitro and in vivo. For the in vivo experiments, 2 full-thickness dermal wounds were created in each mouse (n = 30). While one wound was exposed to 2 daily plasma treatments for 3 min, the other wound served as a control. The wounds were evaluated by imaging and histological analyses at 4, 7, and 11 days post the wound infliction process. Immunohistochemical studies were also performed at the same time points. In vitro proliferation and scratch assay using HaCaT keratinocytes and fibroblasts were performed. The expression levels of wound healing–related genes were analyzed by real-time polymerase chain reaction and western blot analysis. On day 7, the wound healing rates were 53.94% and 63.58% for the control group and the plasma-treated group, respectively. On day 11, these rates were 76.05% and 93.44% for the control and plasma-treated groups, respectively, and the difference between them was significant ( P = .039). Histological analysis demonstrated that plasma treatment promotes the formation of epidermal keratin and granular layers. Immunohistochemical studies also revealed that collagen 1, collagen 3, and alpha-smooth muscle actin appeared more abundantly in the plasma-treated group than in the control group. In vitro, the proliferation of keratinocytes was promoted by plasma exposure. Scratch assay showed that fibroblast exposure to plasma increased their migration. The expression levels of collagen 1, collagen 3, and alpha-smooth muscle actin were elevated upon plasma treatment. In conclusion, cold plasma can accelerate skin wound healing and is well tolerated.


2020 ◽  
pp. 155335062097800
Author(s):  
Ian A. Makey ◽  
Nitin A. Das ◽  
Samuel Jacob ◽  
Magdy M. El-Sayed Ahmed ◽  
Colleen M. Makey ◽  
...  

Background. Retained hemothorax (RH) is a common problem in cardiothoracic and trauma surgery. We aimed to determine the optimum agitation technique to enhance thrombus dissolution and drainage and to apply the technique to a porcine-retained hemothorax. Methods. Three agitation techniques were tested: flush irrigation, ultrasound, and vibration. We used the techniques in a benchtop model with tissue plasminogen activator (tPA) and pig hemothorax with tPA. We used the most promising technique vibration in a pig hemothorax without tPA. Statistics. We used 2-sample t tests for each comparison and Cohen d tests to calculate effect size (ES). Results. In the benchtop model, mean drainages in the agitation group and control group and the ES were flush irrigation, 42%, 28%, and 2.91 ( P = .10); ultrasound, 35%, 27%, and .76 ( P = .30); and vibration, 28%, 19%, and 1.14 ( P = .04). In the pig hemothorax with tPA, mean drainages and the ES of each agitation technique compared with control (58%) were flush irrigation, 80% and 1.14 ( P = .37); ultrasound, 80% and 2.11 ( P = .17); and vibration, 95% and 3.98 ( P = .06). In the pig hemothorax model without tPA, mean drainages of the vibration technique and control group were 50% and 43% (ES = .29; P = .65). Discussion. In vitro studies suggested flush irrigation had the greatest effect, whereas only vibration was significantly different vs the respective controls. In vivo with tPA, vibration showed promising but not statistically significant results. Results of in vivo experiments without tPA were negative. Conclusion. Agitation techniques, in combination with tPA, may enhance drainage of hemothorax.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Praneetha Pallerla ◽  
Narsimha Reddy Yellu ◽  
Ravi Kumar Bobbala

Abstract Background The objective of the study is to evaluate the hepatoprotective activity of methanolic extract fractions of Lindernia ciliata (LC) and development of qualitative analytical profile of the bioactive fraction using HPLC fingerprinting analysis. All the fractions of methanolic extract of Lindernia ciliata (LCME) are assessed for their total phenolic, flavonoid contents and in vitro antioxidant properties by using DPPH, superoxide, nitric oxide, hydroxyl radical scavenging activities and reducing power assay. Acute toxicity study was conducted for all the fractions and the two test doses 50 and 100 mg/kg were selected for the hepatoprotective study. Liver damage was induced in different groups of rats by administering 3 g/kg.b.w.p.o. paracetamol and the effect of fractions were tested for hepatoprotective potential by evaluating serum biochemical parameters and histology of liver of rats. The effective fraction was evaluated for its antihepatotoxic activity against D-Galactosamine (400 mg/kg b.w. i.p.) and in vivo antioxidant parameters viz., Glutathione (GSH), Melondialdehyde (MDA) and Catalase (CAT) levels are estimated using liver homogenate. Results Among all the fractions, butanone fraction of LCME, (BNF-LCME) has shown better hepatoprotective activity and hence it is selected to evaluate the antihepatotoxicity against D-GaIN. The activity of BNF-LCME is well supported in in vitro and in vivo antioxidant studies and may be attributed to flavonoidal, phenolic compounds present in the fraction. Hence, BNF-LCME was subjected to the development of qualitative analytical profile using HPLC finger printing analysis. Conclusions All the fractions of LCME exhibited significant hepatoprotective activity and BNF-LCME (50 mg/kg) was identified as the most effective fraction.


Sign in / Sign up

Export Citation Format

Share Document