Phenolic resin derived from Jatropha curcas seed-husk lignin as phenol substitute

1969 ◽  
Vol 7 (2) ◽  
pp. 217-223 ◽  
Author(s):  
Carlos Alberto Vega-Aguilar ◽  
Giselle Lutz ◽  
Julio F. Mata-Segreda

Phenolic resin derived from Jatropha curcas seed-husk lignin as phenol substitute. A phenolic resin was made, with a fraction of the phenol content substituted by lignin extracted from Jatropha curcas seed husk. The husk was analysed for chemical composition, finding a high quantity of lignin (47% mass fraction). This lignin was extracted using an alkaline pulping method, followed by precipitation with acid. Several lignin-modified phenolic resins were made, using different lignin contents, in mixtures with formaldehyde in alkaline conditions, and curing at 65 ºC for 6 hours. It was noticed that the lignin substitution percentage affects the resin’s mechanical properties, obtaining better results with a 50% substitution. These resins showed good thermal behaviour, electrical insulation properties and good physical stability against water, acidic solutions and organic solvents, but it lacked on stability against alkaline solutions. It is concluded that there is a good opportunity for using the J. curcas seed husk lignin as partial substitute of phenol in phenolic resins, without sacrificing their physicochemical properties. There is a wide range of possibilities on using J. curcas agro-industrial residues as a renewable feedstock. 

2012 ◽  
Vol 512-515 ◽  
pp. 509-512 ◽  
Author(s):  
Long Huang ◽  
Shan Shan Luo ◽  
Wen Kui Li

Al2O3 materials were used in a very wide range due to its good mechanical properties and relative low manufacture cost. The corrosion resistance of Al2O3 materials in acid, alkaline and sea water solutions gained more and more attention because many application situations are severe and the working life is shorten due to the corrosion. In this paper, the corrosion behavior of Al2O3 based materials in acid and alkaline solutions was studied and effect of corrosion time on the corrosion behavior of Al2O3 materials was investigated. The microstructure of as prepared Al2O3 materials was characterized by SEM. Possible corrosion process and mechanism was discussed in details. The results reveal that the as prepared Al2O3 materials show better corrosion resistance in alkaline solution than in acid solutions. In both acid and alkaline conditions, the corrosion mainly occurs in the grain boundary. Mass loss increased with increasing corrosion time, while the corrosion rate was decreased.


1995 ◽  
Vol 60 (2) ◽  
pp. 172-187 ◽  
Author(s):  
Pavel Fott ◽  
František Kolář ◽  
Zuzana Weishauptová

On carbonizing phenolic resins, the development of porous structure takes place which influences the transport properties of carbonized materials. To give a true picture of this effect, specimens in the shape of plates were prepared and carbonized at various temperatures. The carbonizates obtained were studied by adsorption methods, electron microscopy, and mercury porosimetry. Diffusivities were evaluated in terms of measuring the kinetics of wetting and drying. It was found out that the porous structure of specimens in different stages of carbonization is formed mostly by micropores whose volumes were within 0.06 to 0.22 cm3/g. The maximum micropore volume is reached at the temperature of 750 °C. The dependence of diffusivity on the carbonization temperature is nearly constant at first, begins to increase in the vicinity of 400 °C, and at 600 °C attains its maximum. The experimental results reached are in agreement with the conception of the development and gradual closing of the microporous structure in the course of carbonization. The dependence of diffusivity on temperature can be expressed by the Arrhenius equation. In this connection, two possible models of mass transport were discussed.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 293
Author(s):  
Jeu-Ming P. Yuann ◽  
Shwu-Yuan Lee ◽  
Meei-Ju Yang ◽  
Shiuh-Tsuen Huang ◽  
Chien-Wei Cheng ◽  
...  

Catechin exhibits numerous physiological characteristics. In this study, we determined the photosensitivity of catechin to various lights under alkaline conditions, and the mechanisms by which catechin generates free radical species and polymerizes via a photoreaction. In addition to this, the application of catechin photolysis was investigated. A solution of catechin is transparent, but turns yellowish under blue light illumination (BLI) in neutral or weak alkaline solutions. When catechin is subjected to BLI, a dimeric catechin (proanthocyanidin) and a superoxide anion radical (O2•−) are generated in a photolytic reaction. When ascorbic acid or gallic acid is added to catechin and the mixture is subjected to BLI at alkaline pH, fewer catechin dimers and less O2•− are produced, because both acids inhibit the photosensitive oxidation of catechin. When AlCl3 is added to catechin and the mixture is subjected to BLI at pH 8, a photolytic reaction is suppressed by AlCl3, and AlCl3 acts as a catalyst for the disconnection of proanthocyanidin during photolysis. Under alkaline conditions, catechin generates O2•− via photosensitive oxidation, which suppresses the growth of Acinetobacter baumannii (A. baumannii) by at least 4 logs, and deactivates its multi-drug-resistant strain. This study shows that catechin photolysis is a process of oxidation, and that it can be safely applied as a tool for environmental applications.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3133
Author(s):  
Yuling Meng ◽  
Fei Zhao ◽  
Xianwei Jin ◽  
Yun Feng ◽  
Gangzheng Sun ◽  
...  

Fracturing fluids are being increasingly used for viscosity development and proppant transport during hydraulic fracturing operations. Furthermore, the breaker is an important additive in fracturing fluid to extensively degrade the polymer mass after fracturing operations, thereby maximizing fracture conductivity and minimizing residual damaging materials. In this study, the efficacy of different enzyme breakers was examined in alkaline and medium-temperature reservoirs. The parameters considered were the effect of the breaker on shear resistance performance and sand-suspending performance of the fracturing fluid, its damage to the reservoir after gel breaking, and its gel-breaking efficiency. The experimental results verified that mannanase II is an enzyme breaker with excellent gel-breaking performance at medium temperatures and alkaline conditions. In addition, mannanase II did not adversely affect the shear resistance performance and sand-suspending performance of the fracturing fluid during hydraulic fracturing. For the same gel-breaking result, the concentration of mannanase II used was only one fifth of other enzyme breakers (e.g., mannanase I, galactosidase, and amylase). Moreover, the amount of residue and the particle size of the residues generated were also significantly lower than those of the ammonium persulfate breaker. Finally, we also examined the viscosity-reducing capability of mannanase II under a wide range of temperatures (104–158 °F) and pH values (7–8.5) to recommend its best-use concentrations under different fracturing conditions. The mannanase has potential for applications in low-permeability oilfield development and to maximize long-term productivity from unconventional oilwells.


2021 ◽  
Author(s):  
IVAN GALLEGOS ◽  
JOSHUA KEMPPAINEN ◽  
SAGAR U. PATIL ◽  
PRATHAMESH DESHPANDE ◽  
JACOB GISSINER ◽  
...  

Carbon-carbon composites (CCCs) widely used in the aerospace and automotive industries due to their excellent mechanical and thermal properties. Phenolic resins have a relatively high carbon yield, which makes them a suitable candidate for CCCs manufacturing. Molecular Dynamics (MD) can further reduce costs by predicting properties of a material before manufacturing and testing. In the present work, a Molecular Dynamics (MD) model of a crosslinked phenolic resin was developed to predict mechanical properties by implementing the fix bond/react algorithm in LAMMPS. The predicted mass density (ρ) and Young’s Modulus (E) agree well with experimental values and highlights the validity of the topologybased approach to building stable molecular models of phenolic resins.


2020 ◽  
Author(s):  
Zheng Chen ◽  
Aleksander Jaworski ◽  
Jianhong Chen ◽  
Tetyana Budnyak ◽  
Ireneusz Szewczyk ◽  
...  

Metal-free nitrogen-doped carbon is considered as a green functional material, but the structural determination of the atomic positions of nitrogen remains challenging. We recently demonstrated that directly-excited solid state <sup>15</sup>N NMR (ssNMR) spectroscopy is a powerful tool for the determination of such positions in an N-doped carbon at natural <sup>15</sup>N isotope abundance. Here we present a green chemistry approach to the synthesis of N-doped carbon using cellulose as precursor, and a study of the catalytic properties and atomic structures of the related catalyst. The N-doped carbon (NH<sub>3</sub>) was obtained by oxidation of cellulose with HNO<sub>3</sub> followed by ammonolysis at 800°C. It had a N content of 6.5 wt.% and a surface area of 557 m<sup>2 </sup>g<sup>–1</sup>, and <sup>15</sup>N ssNMR spectroscopy provided evidence for graphitic nitrogen besides of regular pyrrolic and pyridinic nitrogen. This structure determination enabled probing the role of graphitic nitrogen for electrocatalytic reactions, such as the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and nitrite reduction reaction. The N-doped carbon catalyst (NH<sub>3</sub>) had higher electrocatalytic activities in OER and HER under alkaline conditions and a higher activity for nitrite reduction, as compared with a catalyst prepared by carbonization of the HNO<sub>3</sub>-treated cellulose in N<sub>2</sub>. The electrocatalytic selectivity for nitrite reduction of the N-doped carbon catalyst (NH<sub>3</sub>) was directly related to the graphitic nitrogen functions. Complementary structural analysis by means of <sup>13</sup>C and <sup>1</sup>H ssNMR, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and low-temperature N<sub>2 </sub>adsorption were preformed and provided support to the findings. The results show that directly-excited <sup>15</sup>N ssNMR at natural <sup>15</sup>N abundance is generally capable to provide information on N-doped carbon materials, and it is expected that the approach can be applied to a wide range of solids with an intermediate amount of N atoms.


2017 ◽  
Vol 83 (8) ◽  
Author(s):  
Haoshu Zhang ◽  
Edward G. Dudley ◽  
P. Michael Davidson ◽  
Federico Harte

ABSTRACT Lecithin is a natural emulsifier used in a wide range of food and nonfood applications to improve physical stability, with no known bioactive effects. In this study, the effect of lecithin on the antimicrobial performance of a constant eugenol concentration was tested against three Escherichia coli strains (C600, 0.1229, and O157:H7 strain ATCC 700728). This is the first study, to our knowledge, focusing on lecithin at concentrations below those commonly used in foods to improve the stability of oil in water emulsions (≤10 mg/100 ml). For all three cultures, significant synergistic antimicrobial effects were observed when E. coli cultures were exposed to a constant eugenol concentration (ranging from 0.043 to 0.050% [wt/wt]) together with critical lecithin concentrations ranging from 0.5 to 1 mg/100 ml. Increasing the concentration of lecithin above 1 mg/100 ml (up to 10 mg/100 ml lecithin) diminished the antibacterial effect to values similar to those with eugenol-only treatments. The formation of aggregates (<100 nm) at the critical lecithin concentration was observed using cryo-transmission electron microscopy (cryo-TEM), together with a reduction in light absorbance at 284 nm. At critically low concentrations of lecithin, the formation of nanoscale aggregates is responsible for improving eugenol antimicrobial effects. IMPORTANCE Essential oils (EOs) are effective natural antimicrobials. However, their hydrophobicity and strong aromatic character limit the use of essential oils in food systems. Emulsifiers (e.g., lecithin) increase the stability of EOs in water-based systems but fail to consistently improve antimicrobial effects. We demonstrate that lecithin, within a narrow critical concentration window, can enhance the antimicrobial properties of eugenol. This study highlights the potential bioactivity of lecithin when utilized to effectively control foodborne pathogens.


2021 ◽  
Author(s):  
Philip Weyl

Abstract Lepidium draba is found in a wide range of habitats ranging from roadsides (highly disturbed sites) to rangelands, meadows and pastures, cultivated fields, home gardens, national parks and wasteland. It exists at high and low latitudes, above and below sea level. It is found under irrigation and in soils of high moisture content and also exists in arid regions. It invades all soil types, although it prefers alkaline conditions and can germinate in saline soils. All of these characteristics and adaptations provide exceptional advantages for this noxious weed and reflect its high potential to invade different agricultural systems. The absence of L. draba plants from plantations or sites where it has not been reported may not be due to the species' ability to invade, survive, grow or develop in these sites but rather to the absence of initial infestation. The weed can invade both agricultural and natural ecosystems (Larson et al., 2000). In summary, L. draba is a serious threat to agriculture and the environment. It is of a high ecological tolerance and is potentially harmful to human and animal health. Its ability to invade and reproduce by different means and to host plant pathogenic agents make this weed invasive with significant problems to man and natural resources.


2001 ◽  
Vol 2 (18) ◽  
Author(s):  
Malcolm MacLaren

On 9 October 2001, the European Court of Justice dismissed (1) a challenge by the Netherlands with the support of Italy and Norway against the Community Directive on the legal protection of biotechnological inventions. (2) Although the Biotech Directive relates to a wide range of public concerns and the Application for its annulment was based on a half-dozen different pleas, the following article will focus on the case as it relates to European Community treaty limitations. It will critically examine the perspectives on the principles of harmonisation and subsidiarity presented in the Application, the Advocate General's Opinion and the Court's Judgment within the broader context of the Community/Union's past and future development. The examination will reveal that in this case the Court has foregone a good opportunity to delimit 'positive integration'. (3) It could have made an important contribution to the on-going discussion about power-sharing between the national and supranational levels. While the judgment does strongly affirm the positive integration paradigm, the margins of the EU's legislative policy competences remain blurred due to its oft-opaque reasoning. The judgment raises, directly and indirectly, as many questions as it answers.


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 317 ◽  
Author(s):  
Chunsun Zhou ◽  
Zhongda Liu ◽  
Lijuan Fang ◽  
Yulian Guo ◽  
Yanpeng Feng ◽  
...  

The classic Fenton reaction, which is driven by iron species, has been widely explored for pollutant degradation, but is strictly limited to acidic conditions. In this work, a copper-based Fenton-like catalyst Cu/Al2O3/g-C3N4 was proposed that achieves high degradation efficiencies for Rhodamine B (Rh B) in a wide range of pH 4.9–11.0. The Cu/Al2O3 composite was first prepared via a hydrothermal method followed by a calcination process. The obtained Cu/Al2O3 composite was subsequently stabilized on graphitic carbon nitride (g-C3N4) by the formation of C−O−Cu bonds. The obtained composites were characterized through FT-IR, XRD, TEM, XPS, and N2 adsorption/desorption isotherms, and the immobilized Cu+ was proven to be active sites. The effects of Cu content, g-C3N4 content, H2O2 concentration, and pH on Rh B degradation were systematically investigated. The effect of the catalyst dose was confirmed with a specific reaction rate constant of (5.9 ± 0.07) × 10−9 m·s−1 and the activation energy was calculated to be 71.0 kJ/mol. In 100 min 96.4% of Rh B (initial concentration 20 mg/L, unadjusted pH (4.9)) was removed in the presence of 1 g/L of catalyst and 10 mM of H2O2 at 25 °C, with an observed reaction rate constant of 6.47 × 10−4 s−1. High degradation rates are achieved at neutral and alkaline conditions and a low copper leaching (0.55 mg/L) was observed even after four reaction cycles. Hydroxyl radical (HO·) was identified as the reactive oxygen species by using isopropanol as a radical scavenger and by ESR analysis. HPLC-MS revealed that the degradation of Rh B on Cu/Al2O3/CN composite involves N-de-ethylation, hydroxylation, de-carboxylation, chromophore cleavage, ring opening, and the mineralization process. Based on the results above, a tentative mechanism for the catalytic performance of the Cu/Al2O3/g-C3N4 composite was proposed. In summary, the characteristics of high degradation rate constants, low ion leaching, and the excellent applicability in neutral and alkaline conditions prove the Cu/Al2O3/g-C3N4 composite to be a superior Fenton-like catalyst compared to many conventional ones.


Sign in / Sign up

Export Citation Format

Share Document