Photocatalytic degradation of synthetic dye under sunlight

2007 ◽  
Vol 61 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Dusan Mijin ◽  
Mirko Jugurdzija ◽  
Petar Jovancic

Synthetic dyes are widely used in the textile industry. Dye pollutants from the textile industry are an important source of environmental contamination. The majority of these dyes are toxic, mostly non-biodegradable and also resistant to decomposition by physico-chemical methods. Among new oxidation methods or "advanced oxidation processes", heterogeneous photocatalysis appears as an emerging destructive technology leading to the total mineralization of many organic pollutants. CI Basic Yellow 28 (BY28), commonly used as a textile dye, could be photocatalytically degraded using TiU2 as catalyst under sunlight. The effect of some parameters such as the initial catalyst concentration, initial dye concentration, initial NaCl and Na2CO3 concentrations, pH, H2O2 and type of catalyst on the degradation rate of BY28 was examined in details. The presence of NaCl and Na2CO3 led to inhibition of the photodegradation process. The highest photodegradation rate was observed at high pH, while the rate was the lowest at low pH. Increase of the initial H2O2 concentration increased the initial BY28 photodegradation efficiency. ZnO was a better catalyst than TiO2 at low dye concentrations.

2017 ◽  
Vol 5 (2) ◽  
pp. 108-126 ◽  
Author(s):  
Pradeep Kumar Singh ◽  
Ram Lakhan Singh

Synthetic dyes are widely used in textile, paper, food, cosmetics and pharmaceutical industries with the textile industry as the largest consumer. Among all the available synthetic dyes, azo dyes are the largest group of dyes used in textile industry. Textile dyeing and finishing processes generate a large amount of dye containing wastewater which is one of the main sources of water pollution problems worldwide. Several physico-chemical methods have been applied to the treatment of textile wastewater but these methods have many limitations due to high cost, low efficiency and secondary pollution problems. As an alternative to physico-chemical methods, biological methods comprise bacteria, fungi, yeast, algae and plants and their enzymes which received increasing interest due to their cost effectiveness and eco-friendly nature. Decolorization of azo dyes by biological processes may take place either by biosorption or biodegradation. A variety of reductive and oxidative enzymes may also be involved in the degradation of dyes. This review provides an overview of decolorization and degradation of azo dyes by biological processes and establishes the fact that these microbial and plant cells are significantly effective biological weapon against the toxic azo dyes. Int. J. Appl. Sci. Biotechnol. Vol 5(2): 108-126


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1181
Author(s):  
Elvia Gallegos ◽  
Florinella Muñoz Bisesti ◽  
Katherine Vaca-Escobar ◽  
Cristian Santacruz ◽  
Lenys Fernández ◽  
...  

Most dyes used in the textile industry are chemically stable and poorly biodegradable, therefore, they are persistent in the environment and difficult to degrade by conventional methods. An alternative treatment for this kind of substance is heterogeneous photocatalysis using TiO2, so, in this work, it is proposed to degrade Direct Blue 1 (DB1) using microparticulate TiO2 irradiated with e-beam at three different doses: 5, 10 and 20 kGy (J/kg). The DB1 degradation was implemented in a batch reactor (DB1 initial concentration = 50 mg L−1, pH 2.5, TiO2 concentration = 200 mg L−1). We have demonstrated that the photocatalytic power of TiO2, when irradiated with e-beam (5, 10, 20 kGy), varies slightly, with minor effects on photodegradation performance. However, the dose of 10 kGy showed a slightly better result, according to the DB1 photodegradation rate constant. Adsorption process was not affected by irradiation; its isotherm was fitted to Freundlich’s mathematical model. The DB1 photodegradation rate constants, after one hour of treatment, were: 0.0661 and 0.0742 min−1 for irradiated (10 kGy) and nonirradiated TiO2, respectively. The degradation rate constant has an increase of 12.3% for irradiated TiO2. Finally, there was no evidence of mineralization in the degradation process after 60 min of treatment. According to the results, the irradiation of microparticulate TiO2 with e-beam (10 kGy) slightly improves the photodegradation rate constant of DB1.


2017 ◽  
Vol 16 (4) ◽  
pp. 1-12
Author(s):  
Amrita Nair ◽  
Nandini Rajendhiran ◽  
R Varsha ◽  
Biljo V Joseph ◽  
V L Vasantha

Release of textile effluent into the environment is a matter of health concern. Dyes and pigments that are part of textile effluent generate hazardous wastes which are generally inorganic or organic contaminants. Among the present pollution control strategies, biodegradation of synthetic dyes by microbes is evolving as a promising approach, even more than physico-chemical methods. While both mixed cultures and pure cultures have been used to achieve efficient biodegradation, no conclusive result has been determined. This paper aims at checking the efficiency of mixed culture of sewage and pure isolates in degradation of azo dyes, both simple dyes like methyl red and methyl orange and a more complex dye like Janus green.


2020 ◽  
Vol 80 (3) ◽  
pp. 615-620
Author(s):  
Ü. D. Gül

Abstract Synthetic dyes, particularly reactive and acid dyes, are commonly used in the textile industry because of their advantages as excellent color fastness and brightness. Also, surfactants are used for an increment of coloring success in the textile industry. One of the major problems concerning textile wastewater is the treatment of the effluents containing both dyes and surfactants. Biological treatment systems are recommended as useful, economic and eco-friendly methods for treatment of industrial wastewater. The purpose of this study was to investigate the binary removal of a textile dye and a surfactant by growing Aspergillus versicolor culture in molasses medium. The effect of dye and surfactant concentration on the removal of dye and surfactant was determined. This study resulted that 100% of the surfactant and dye molecules removed together with the formation of a dye-surfactant complex by fungus. It is concluded that binary removal systems are very efficient for industrial wastewater treatment.


Author(s):  
Ganesan Sathiyaraj ◽  
K. Chellappan Ravindran ◽  
Zakir Hussain Malik

<p>Present study perceives that textile dye effluents of Erode, Pallipalayam and Bhavani region have substantial volume of EC, pH, TDS, COD, BOD, Sodium Chloride, Calcium, Magnesium, Potassium and heavy metals. Results point out that irrespective of the source, effluent properties exceeded permissible limits by WHO/ FAO/Federal Environmental Protection Agency for irrigation. The textile industry consumes a mixture of chemicals and huge amount of water during the production process. About 200 L of water are used to produce 1 kg of textile. The textile effluent can cause several health infections like haemorrhage, ulceration of skin, nausea, skin irritation and dermatitis. <br /><br /></p>


2019 ◽  
Vol 964 ◽  
pp. 174-179
Author(s):  
Haniffudin Nurdiansah ◽  
Diah Susanti ◽  
Rena Eka Firlyana ◽  
Hariyati Purwaningsih

The growth of the textile industry in Indonesia has resulted in increased textile dye waste production. Rhodamine B is one of the dyes that are often used in the textile industry. The use of these dyes will cause serious environmental and biological problems, even able to induce irritation of the skin and eyes. Thus, it is necessary to filter dyes from the textile industry waste in Indonesia. Some conventional methods for removing Rhodamine B are carried out by biochemical and physical-chemical methods, such as liquid membranes, ozonation and adsorption, but this method requires expensive and not very effective costs. One alternative method that can be applied in Indonesia is photocatalysts. Photocatalytics are processes where light and catalyst are simultaneously used to accelerate chemical reactions. In this study, the photocatalyst used was semiconductor material ZnO and TiO2 with the addition of rGO. rGO synthesis was carried out using the Hummer method, for the synthesis of ZnO using Zinc powder as a precursor, and the synthesis of TiO2 using precursor of TiCl3. This study was conducted to analyze the effect of adding 5%, 10%, and 15% rGO to the photocatalytic properties of ZnO / rGO / TiO2 composites for degradation of Rhodamine B. The characterization process carried out in this study included XRD, SEM & EDX, FTIR, and photocatalytic testing. Photocatalyst materials ZnO / rGO / TiO2 with variations in the amount of rGO were synthesized as evidenced by XRD testing, where there was a peak for all three component, SEM, shows the morphology of Zn in the form of hexagonal nano rod, rGO in the form of transparent sheets and TiO2 in the form of agglomerated balls. From FTIR testing, rGO and TiO2 functional groups were seen. The highest efficiency for degradation of Rhodamine-B was obtained for the addition of 15% rGO with a 5-hour irradiation time, ie its efficiency reached 96.92% in degradation of Rhodamine B.


2020 ◽  
Vol 11 (2) ◽  
pp. 117
Author(s):  
Ülküye Dudu Gül

All over the world, the treatment of textile wastewater has become a significant problem due to the development of the textile industry. Particularly, the treatment of synthetic dyes, which are found abundantly amounts in textile wastewater, has gained importance. Recent studies have focused on the use of biological treatment technologies to remove pollutants in water. On the other hand, the disposal of wastes from biological treatment technologies was considered as another environmental problem. This study aims to compare the antimicrobial properties of the extract obtained from dye loaded and un-loaded lichen biomass after the biosorption process. According to the results of this study, it was found that the extract obtained from the waste lichen biomass, which has loaded with the textile dye in the decolorization process, showed a similar antimicrobial effect with the unloaded lichen extract. To sum up the waste lichen biomass used to remove textile dyes can be reused for the application of antimicrobial products.


Chemosensors ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 69
Author(s):  
Valérie Gaudin

The detection of antimicrobial residues in food products of animal origin is of utmost importance. Indeed antimicrobial residues could be present in animal derived food products because of animal treatments for curative purposes or from illegal use. The usual screening methods to detect antimicrobial residues in food are microbiological, immunological or physico-chemical methods. The development of biosensors to propose sensitive, cheap and quick alternatives to classical methods is constantly increasing. Aptasensors are one of the major trends proposed in the literature, in parallel with the development of immunosensors based on antibodies. The characteristics of electrochemical sensors (i.e., low cost, miniaturization, and portable instrumentation) make them very good candidates to develop screening methods for antimicrobial residues in food products. This review will focus on the recent advances in the development of electrochemical aptasensors for the detection of antimicrobial residues in food products. The contribution of nanomaterials to improve the performance characteristics of electrochemical aptasensors (e.g., Sensitivity, easiness, stability) in the last ten years, as well as signal amplification techniques will be highlighted.


Sign in / Sign up

Export Citation Format

Share Document