Three-Dimensional Interpretation

2019 ◽  
pp. 57-70
Author(s):  
Richard Evan Schwartz

This chapter explains the 3-dimensional interpretation of the plaid model. Section 5.2 stacks the blocks on top of each other in such a way that remotely adjacent blocks appear actually adjacent to each other in the stack. Section 5.3 shows how to modify the spacetime diagrams constructed in Section 4.3 and 4.4 so that they are unions of embedded loops, much like the plaid polygons. This modification is called pixilation. Section 5.4 shows that the plaid model construction and the pixilation processes are compatible with each other. Section 5.5 uses the compatibility of all the constructions to create polyhedral surfaces which simultaneously interpolate between the plaid polygons and the pixelated spacetime diagrams. These surfaces are viewed as spacetime diagrams for the plaid polygons; they are called spacetime plaid surfaces. Finally, Section 5.6 indulges in some discussion and speculation.

Author(s):  
Robert Glaeser ◽  
Thomas Bauer ◽  
David Grano

In transmission electron microscopy, the 3-dimensional structure of an object is usually obtained in one of two ways. For objects which can be included in one specimen, as for example with elements included in freeze- dried whole mounts and examined with a high voltage microscope, stereo pairs can be obtained which exhibit the 3-D structure of the element. For objects which can not be included in one specimen, the 3-D shape is obtained by reconstruction from serial sections. However, without stereo imagery, only detail which remains constant within the thickness of the section can be used in the reconstruction; consequently, the choice is between a low resolution reconstruction using a few thick sections and a better resolution reconstruction using many thin sections, generally a tedious chore. This paper describes an approach to 3-D reconstruction which uses stereo images of serial thick sections to reconstruct an object including detail which changes within the depth of an individual thick section.


Author(s):  
Neil Rowlands ◽  
Jeff Price ◽  
Michael Kersker ◽  
Seichi Suzuki ◽  
Steve Young ◽  
...  

Three-dimensional (3D) microstructure visualization on the electron microscope requires that the sample be tilted to different positions to collect a series of projections. This tilting should be performed rapidly for on-line stereo viewing and precisely for off-line tomographic reconstruction. Usually a projection series is collected using mechanical stage tilt alone. The stereo pairs must be viewed off-line and the 60 to 120 tomographic projections must be aligned with fiduciary markers or digital correlation methods. The delay in viewing stereo pairs and the alignment problems in tomographic reconstruction could be eliminated or improved by tilting the beam if such tilt could be accomplished without image translation.A microscope capable of beam tilt with simultaneous image shift to eliminate tilt-induced translation has been investigated for 3D imaging of thick (1 μm) biologic specimens. By tilting the beam above and through the specimen and bringing it back below the specimen, a brightfield image with a projection angle corresponding to the beam tilt angle can be recorded (Fig. 1a).


2020 ◽  
Vol 29 (4) ◽  
pp. 741-757
Author(s):  
Kateryna Hazdiuk ◽  
◽  
Volodymyr Zhikharevich ◽  
Serhiy Ostapov ◽  
◽  
...  

This paper deals with the issue of model construction of the self-regeneration and self-replication processes using movable cellular automata (MCAs). The rules of cellular automaton (CA) interactions are found according to the concept of equilibrium neighborhood. The method is implemented by establishing these rules between different types of cellular automata (CAs). Several models for two- and three-dimensional cases are described, which depict both stable and unstable structures. As a result, computer models imitating such natural phenomena as self-replication and self-regeneration are obtained and graphically presented.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3887
Author(s):  
Watcharapong Pudkon ◽  
Chavee Laomeephol ◽  
Siriporn Damrongsakkul ◽  
Sorada Kanokpanont ◽  
Juthamas Ratanavaraporn

Three-dimensional (3D) printing is regarded as a critical technology in material engineering for biomedical applications. From a previous report, silk fibroin (SF) has been used as a biomaterial for tissue engineering due to its biocompatibility, biodegradability, non-toxicity and robust mechanical properties which provide a potential as material for 3D-printing. In this study, SF-based hydrogels with different formulations and SF concentrations (1–3%wt) were prepared by natural gelation (SF/self-gelled), sodium tetradecyl sulfate-induced (SF/STS) and dimyristoyl glycerophosphorylglycerol-induced (SF/DMPG). From the results, 2%wt SF-based (2SF) hydrogels showed suitable properties for extrusion, such as storage modulus, shear-thinning behavior and degree of structure recovery. The 4-layer box structure of all 2SF-based hydrogel formulations could be printed without structural collapse. In addition, the mechanical stability of printed structures after three-step post-treatment was investigated. The printed structure of 2SF/STS and 2SF/DMPG hydrogels exhibited high stability with high degree of structure recovery as 70.4% and 53.7%, respectively, compared to 2SF/self-gelled construct as 38.9%. The 2SF/STS and 2SF/DMPG hydrogels showed a great potential to use as material for 3D-printing due to its rheological properties, printability and structure stability.


Author(s):  
So Young Joo ◽  
Seung Yeol Lee ◽  
Yoon Soo Cho ◽  
Sangho Yi ◽  
Cheong Hoon Seo

Abstract Hands are the part of the body that are most commonly involved in burns, and the main complications are finger joint contractures and nerve injuries. Hypertrophic scarring cannot be avoided despite early management of acute hand burn injuries, and some patients may need application of an exoskeleton robot to restore hand function. To do this, it is essential to individualize the customization of the robot for each patient. Three-dimensional (3D) technology, which is widely used in the field of implants, anatomical models, and tissue fabrication, makes this goal achievable. Therefore, this report is a study on the usefulness of an exoskeleton robot using 3D technology for patients who lost bilateral hand function due to burn injury. Our subject was a 45-year-old man with upper limb dysfunction of 560 days after a flame and chemical burn injury, with resultant impairment of manual physical abilities. After wearing an exoskeleton robot made using 3D printing technology, he could handle objects effectively and satisfactorily. This innovative approach provided considerable advantages in terms of customization of size and reduction in manufacturing time and costs, thereby showing great potential for use in patients with hand dysfunction after burn injury.


2020 ◽  
Vol 21 (15) ◽  
pp. 5499
Author(s):  
Hannah L. Smith ◽  
Stephen A. Beers ◽  
Juliet C. Gray ◽  
Janos M. Kanczler

Treatment for osteosarcoma (OS) has been largely unchanged for several decades, with typical therapies being a mixture of chemotherapy and surgery. Although therapeutic targets and products against cancer are being continually developed, only a limited number have proved therapeutically active in OS. Thus, the understanding of the OS microenvironment and its interactions are becoming more important in developing new therapies. Three-dimensional (3D) models are important tools in increasing our understanding of complex mechanisms and interactions, such as in OS. In this review, in vivo animal models, in vitro 3D models and in ovo chorioallantoic membrane (CAM) models, are evaluated and discussed as to their contribution in understanding the progressive nature of OS, and cancer research. We aim to provide insight and prospective future directions into the potential translation of 3D models in OS.


2021 ◽  
pp. 105566562110363
Author(s):  
Jiuli Zhao ◽  
Hengyuan Ma ◽  
Yongqian Wang ◽  
Tao Song ◽  
Chanyuan Jiang ◽  
...  

Objective Palatoplasty would involve the structures around the pterygoid hamulus. However, clinicians hold different opinions on the optimal approach for the muscles and palatine aponeurosis around the pterygoid hamulus. The absence of a consensus regarding this point can be attributed to the lack of investigations on the exact anatomy of this region. Therefore, we used micro-computed tomography to examine the anatomical structure of the region surrounding the pterygoid hamulus. Design Cadaveric specimens were stained with iodine–potassium iodide and scanned by micro-computed tomography to study the structures of the tissues, particularly the muscle fibers. We imported Digital Imaging and Communications in Medicine images to Mimics to reconstruct a 3-dimensional model and simplified the model. Results Three muscles were present around the pterygoid hamulus, namely the palatopharyngeus (PP), superior constrictor (SC), and tensor veli palatini (TVP). The hamulus connects these muscles as a key pivot. The TVP extended to the palatine aponeurosis, which bypassed the pterygoid hamulus, and linked the PP and SC. Some muscle fibers of the SC originated from the hamulus, the aponeurosis of which was wrapped around the hamulus. There was a distinct gap between the pterygoid hamulus and the palatine aponeurosis. This formed a pulley-like structure around the pterygoid hamulus. Conclusions Transection or fracture of the palatine aponeurosis or pterygoid hamulus, respectively, may have detrimental effects on the muscles around the pterygoid hamulus, which play essential roles in the velopharyngeal function and middle ear ventilation. Currently, cleft palate repair has limited treatment options with proven successful outcomes.


Author(s):  
Maureen J. Murray ◽  
Thomas R. Canfield

Abstract The flexible link and sprocket system of a tracked vehicle was modeled as part of a supercomputing pilot project on a Cray X-MP supercomputer. This computer simulation model utilizes the ADAMS 3-dimensional rigid body dynamics code. Using this ADAMS model of the track system, engineers can simulate the complex action of this three dimensional mechanism, and, through the use of graphics, can illustrate the behavior of the interaction of the components in this track system.


2021 ◽  
pp. 1-32
Author(s):  
Katja D Repp ◽  
Dörte Radke ◽  
Till Ittermann ◽  
Martin Albers ◽  
Marcello R P Markus ◽  
...  

Abstract Currently various protocols regarding the site of waist circumference (WC) measurement are in place. This study aimed to analyze the effect of the site of WC measurement on visceral fat (VAT) estimation. WC was obtained at seven anatomical sites in 211 German volunteers (103 males) aged 23-81 using 3-dimensional photonic body scanning (PBS). At one site WC was additionally measured by tape. The quantity of VAT was assessed by magnetic resonance imaging (MRI). Models to estimate VAT based on WC were developed; the precision of the estimation is represented by R2. The influence of the applied method of WC assessment (tape vs. PBS) on the estimations is reported. Results show that the amount of estimated VAT and the precision of VAT estimation were dependent on the site of measurement. VAT was estimated most precisely by WC taken at the level of the lowest rib (WCrib: R²=0.75 females; 0.79 males), the minimum circumference (WCmin: R²=0.75 females; 0.77 males) and at the narrowest part of the torso (WCnar: R²=0.76 females; 0.77 males), and least precisely by WC assessed at the top of iliac crest (WCiliac: R²=0.61 females; 0.60 males). VAT estimates based on WC obtained by PBS were smaller and estimations were slightly less precise compared to estimates based on tape measures. Our results indicate that the method and the site of waist measurement should be considered when estimating VAT based on WC. The implementation of a standardized protocol using either WCrib, WCmin or WCnar could improve the precision of VAT estimation.


2018 ◽  
Vol 17 ◽  
pp. 153601211880272 ◽  
Author(s):  
Liliya M. Yamaleyeva ◽  
K. Bridget Brosnihan ◽  
Lane M. Smith ◽  
Yao Sun

Placental oxygenation varies throughout pregnancy. The detection of early changes in placental oxygenation as pregnancy progresses is important for early identification of preeclampsia or other complications. This invited commentary discusses a recent preclinical study on the application of 3-dimensional photoacoustic imaging (PAI) for assessment of regional variations in placental oxygenation and longitudinal analysis of differences in placental oxygenation throughout normal pregnancy and pregnancy associated with hypertension or placental insufficiency in mice. Three-dimensional PAI more accurately reflects oxygen saturation, hemoglobin concentrations, and changes in oxygen saturation in whole placenta compared to 2-dimensional imaging. These studies suggest that PAI is a sensitive tool to detect different levels of oxygen saturation in the placental and fetal vasculature in pathologic and normal pregnancy in mice.


Sign in / Sign up

Export Citation Format

Share Document