scholarly journals Electrospun Nylon-6 Nanofibers and Their Characteristics

2020 ◽  
Vol 9 (1) ◽  
pp. 9-19
Author(s):  
Ida Sriyanti ◽  
Meily P Agustini ◽  
Jaidan Jauhari ◽  
Sukemi Sukemi ◽  
Zainuddin Nawawi

The purposes of this research were to investigate the synthesized Nylon-6 nanofibers using electrospinning technique and their characteristics. The method used in this study was an experimental method with a quantitative approach. Nylon-6 nanofibers have been produced using the electrospinning method. This fiber was made with different concentrations, i.e. 20% w/w (FN1), 25% w/w (FN2), and 30% w/w (FN3). The SEM results show that the morphology of all nylon-6 nanofibers) forms perfect fibers without bead fiber. Increasing fiber concentration from 20% w/w to 30% w/w results in bigger morphology and fiber diameter. The dimensions of the FN1, FN2, and FN3 fibers are 1890 nm, 2350 nm, and 2420 nm, respectively. The results of FTIR analysis showed that the increase in the concentration of nylon-6 (b) and the electrospinning process caused a peak shift in the amide II group (CH2 bond), the carbonyl group and the CH2 stretching of the amide III group from small wave numbers to larger ones. The results of XRD characterization showed that the electrospinning process affected the changes in the XRD pattern of nylon-6 nanofiber (FN1, FN2, and FN3) in the state of semi crystal. Nylon-6 nanofibers can be used for applications in medicine, air filters, and electrode for capacitors

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2086
Author(s):  
Pedro J. Rivero ◽  
Iker Rosagaray ◽  
Juan P. Fuertes ◽  
José F. Palacio ◽  
Rafael J. Rodríguez

In this work, the electrospinning technique is used for the fabrication of electrospun functional fibers with desired properties in order to show a superhydrophobic behavior. With the aim to obtain a coating with the best properties, a design of experiments (DoE) has been performed by controlling several inputs operating parameters, such as applied voltage, flow rate, and precursor polymeric concentration. In this work, the reference substrate to be coated is the aluminum alloy (60661T6), whereas the polymeric precursor is the polyvinyl chloride (PVC) which presents an intrinsic hydrophobic nature. Finally, in order to evaluate the coating morphology for the better performance, the following parameters—such as fiber diameter, surface roughness (Ra, Rq), optical properties, corrosion behavior, and wettability—have been deeply analyzed. To sum up, this is the first time that DoE has been used for the optimization of superhydrophobic or anticorrosive surfaces by using PVC precursor for the prediction of an adequate surface morphology as a function of the input operational parameters derived from electrospinning process with the aim to validate better performance.


2012 ◽  
Vol 622-623 ◽  
pp. 271-275 ◽  
Author(s):  
Patcharaporn Thitiwongsawet ◽  
Tanwa Tiyajalearn ◽  
Aumnart Klinchan ◽  
Chaninporn Thanatthammachote

Polycaprolactone (PCL) fiber bundles were successfully prepared by self-bundling electrospinning technique from two different concentrations (i.e. 12% and 15% w/v) of PCL solution. Self-bundling of electrospun fibers was induced by used of a grounded needle tip at the beginning of electrospinning process. Electrical conductivity of PCL solutions were increased and average fiber diameter were decreased by addition and increasing amount of pyridinium formate (PF) at concentration of 3, 4, and 5% w/v into either 12% or 15% w/v PCL solutions. The average diameter of electrospun fibers and bundles were in range of 2.1-3.3 m and 100-120 m, respectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Utkarsh ◽  
Hussien Hegab ◽  
Muhammad Tariq ◽  
Nabeel Ahmed Syed ◽  
Ghaus Rizvi ◽  
...  

In this study, the polymeric nanofibers of polyvinylpyrrolidone (PVP) were manufactured using the electrospinning technique. The electrospinning process parameters such as voltage, polymer concentration, rotational speed of the collecting drum, collecting distance, and flow rate were optimized to obtain the minimum fiber diameter for sound absorption applications. The effects of these parameters on the fiber diameter as output responses were investigated by analysis of variance (ANOVA) and Taguchi’s array design. Furthermore, a mathematical model was generated using response surface methodology (RSM) to model the electrospinning process. The high voltage and polymer concentration were observed to be the most significant parameters at 95% and 99% confidence level. The average model accuracy of 83.4% was observed for the predictive model of electrospinning which is considered acceptable as it is composed of complete experimental trials of 27 out of 243 runs. The experimental study offers a promising attempt in the open literature to carefully understand the effect of various electrospinning parameters when producing PVP nanofibers.


2019 ◽  
Vol 14 ◽  
pp. 155892501984322
Author(s):  
Yu Chen ◽  
Prashant R Waghmare ◽  
Cagri Ayranci

In this article, the electrospinning process for Silica nanoparticles reinforced Nylon 6 nanofiber composite mats is investigated. More specifically, the effect of Nylon 6/Formic Acid concentration and silica weight fraction on the solution viscosity and the properties of the end product is studied. Rheological measurements were conducted to investigate the solutions’ viscosity, and scanning electron microscope was used to characterize the morphology and dimensions of the nanofibers. Energy dispersion X-ray was used to prove that silica nanoparticles are well distributed within the nanofibers. Finally, surface roughness and porosity of the mats were measured. It was found that when Nylon 6/Formic Acid concentration increased from 15 to 20 wt%, solution viscosity increased by 0.63 Pa·s, which leads to the increase in average fiber diameter from 103 to 160 nm. Also, when silica increased by 6%, highest viscosity increase was 0.1 Pa·s, while average fiber diameter increased for around 5 nm. In addition, protuberances or small silica beads are observed when silica weight fraction is increased above a critical value. The porosity remains unchanged while surface roughness increased by increasing silica weight fraction and decreasing Nylon 6 concentration. This study outlines the successful fabrication of bead-free Silica reinforced Nylon 6 nanofibers and their mats via electrospinning. Good control over processing parameters results in tailorability of size, morphology, and surface roughness of the end products.


2011 ◽  
Vol 1316 ◽  
Author(s):  
Saida P. Khan ◽  
Kadambari Bhasin ◽  
Golam M. Newaz

ABSTRACTIn the electrospinning process, fibers ranging from 50 nm to 1000 nm or greater can be produced by applying an electric potential to a polymeric solution [1, 2]. Our group has studied the fabrication of electro-spun Poly-caprolactone (PCL) nanofiber consisting of a range of fiber diameter (nm-um) and pore sizes. PCL is a biocompatible, FDA approved and biodegradable [3, 4] polymer. As a solvent we have used 2,2,2-trifluoroethanol (TFE) for its biocompatibility, conductivity and high dielectric constant. The electrospinning technique consists of a simple setup with a number of variables working in a complex and unpredictable way. The variables affecting fiber diameter are polymer concentration in the solution, flow rate, applied voltage, tip to collector distance, diameter of the needle/capillary, polymer/solvent dielectric constant etc. In our study we have found that concentration of the solution and molecular weight of the polymer are the most important parameters for forming the nanofibers and viscosity is important for the fiber diameter. To optimize so many variables to control the fiber diameter, we have used the factorial design method. The study is important for the fabrication of biomimetic scaffold for vascular implant and tissue engineering application.


2016 ◽  
Vol 1133 ◽  
pp. 386-390
Author(s):  
N.A.M. Nor ◽  
Juhana Jaafar ◽  
Mukhlis A. Rahman ◽  
M.H.D. Othman ◽  
Norhaniza Yusof ◽  
...  

Titanium dioxide nanofibers with diameter ranging to several nanometers were synthesized via electrospinning technique. The precursor solution was prepared by mixing the polyvinylpyrrolidone, PVP (MW~1,300,000) in ethanol, meanwhile titanium tetraisopropoxide, TTIP in acetic acid was slowly added into the solution under a vigorous stirring. The precursor solutions were then used in the electrospinning process under high voltage supply. As-spun nanofibers were heat-treated under different temperature 400°C and 500°C. The TiO2 nanofibers were characterized by using scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) and X-ray diffraction (XRD). The results indicated that the heat treated TiO2 nanofibers consist of anatase and rutile phases. As the calcination temperature increased (400-500°C), the anatase phases are greater than rutile phase and specific surface area are decreases while the calcination process influenced the nanofibers diameter.


2017 ◽  
Vol 13 (1) ◽  
pp. 84-93
Author(s):  
Akram Raheem Jabur ◽  
Laith Kais Abbas ◽  
Saja Aqeel Moosa

Bacterial water pollution is a genuine general wellbeing concern since it causes various maladies. Antimicrobial nanofibers can be integrated by incorporating nanobiocides, for example, silver nanoparticles into nanofibers. Nylon 6 was dissolved in formic acid at a concentration of (25 wt. %) and tough antibacterial (AgNO3/Nylon) nanofibers were produced utilizing electrospinning system. Polymer solution was tested before accomplishing electrospinning process to acquire its surface tension, electric conductivity and viscosity, where every one of those parameters increased relatively with increasing concentration of (AgNO3) additions. SEM and EDX spectra were utilized to focus on the morphology, surface elemental membrane, fibers and porosize diameters. The resulted nanofiber membrane has an average fiber diameter of 139 nm for pure nylon 6 and 247 nm for (1.2 wt. % AgNO3/Nylon). The resultant polymer membrane was then tested for their ability to destroy microorganisms in water; antimicrobial tests showed that the prepared nanofibers have a high bactericidal effect against Escherichia Coli Bacteria with inhibition zone (10 mm) and antibacterial activity (99%). Likewise, these results highlight the potential utilization of these nanofibrous mats as antimicrobial agents.


2014 ◽  
Vol 894 ◽  
pp. 360-363 ◽  
Author(s):  
J. Prasanna ◽  
T. Monisha ◽  
V. Ranjithabala ◽  
Ravikant Gupta ◽  
E. Vijayakumar ◽  
...  

Electrospinning process is proved to be one of the finest fabrication techniques to produce nanofibers. This research deals with the experimental study on the effect of various process parameters of electrospinning technique such as voltage, flow rate, distance (nozzle to collector distance) and concentration, on the development of nanofibers from a new polymer, namely PBAT. Taguchis experimental design was implemented to carry out this research by conducting an L-18 orthogonal array. Taguchi method and Analysis of Variance (ANOVA) were employed to examine the effect of different process parameters simultaneously on the fabrication of nanofibers. The fibers were characterized through scanning electron microscope (SEM) for the measurement of its diameter. The experimental results indicate that all the chosen process parameters had significant influence on the fiber diameter. It was inferred that the concentration and voltage had a very notable impact on the fiber diameter. Confirmation experimental run was performed on the identified optimal setting of the process parameters.


2013 ◽  
Vol 737 ◽  
pp. 166-175 ◽  
Author(s):  
Jessie S. Pamudji ◽  
Khairurrijal ◽  
Rachmat Mauludin ◽  
Titi Sudiati ◽  
Maria Evita

Background and purpose: Ketoprofen is an NSAIDs agent which has analgesic and anti inflammation effects. Ketoprofen is classified into class II in the biopharmaceutical classification system that has a high permeability but low solubility. Hence, the absorption rate of this substance is governed by its dissolution rate. Electrospinning is a method that combine solid dispersion technology and nanotechnology. This method can be selected to enhance the dissolution rate of active substances. The aim of this research is to improve the dissolution rate of ketoprofen through the preparation of polymeric nanofiber polivinyl alcohol (PVA) containing ketoprofen using electrospinning process. Methods: Preparation of nanofibers with various of PVA-ketoprofen ratio, flow rate, and PVA concentration in the solution were accomplished using electrospinning instrument. Casting solid dispersion film were also prepared by solvent evaporation method and used as a reference. The rates of dissolution of ketoprofen from each of nanofibers, casting films, and pure ketoprofen were conducted in HCl pH 1.2 medium at 37oC. Characterization of nanofibers was carried out using Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). Results: Nanofibers which contained of PVA-ketoprofen 1:1 in ratio w/w showed a significant improvement in dissolution (p<0.05) compared to the pure ketoprofen. Meanwhile, nanofibers obtained from a solution containing 7.5 % PVA (w/v) and 4 ml/h in flow rate showed the best dissolution rate improvement and significantly different (p<0.05) with either the casting film or the pure ketoprofen. The improvement of ketoprofen dissolution was due to the increasing of surface area of nanofiber and the change of ketoprofen from crystalline into amorphous form. Conclusion: Electrospinning technique can be used to improve the dissolution rate of ketoprofen through the PVA-ketoprofen nanofiber formation by choosing the appropriate polymer concentration and manufacturing process.


1997 ◽  
Vol 503 ◽  
Author(s):  
H. Jiang ◽  
M. K. Davis ◽  
R. K. Eby ◽  
P. Arsenovic

ABSTRACTPhysical properties and structural parameters have been measured for ropes of nylon 6 as a function of the number of use operations. The fractional content of the α crystal form, sound velocity, birefringence, tensile strength and length all increase systematically and significantly with increasing the number of use operations. The fractional content of the γ crystal form and fiber diameter decrease with use. These trends indicate that the measurement of such properties and structural parameters, especially the length, provide a possible basis for establishing a reliable, rapid, and convenient nondestructive characterization method to predict the remaining service life of nylon 6 ropes.


Sign in / Sign up

Export Citation Format

Share Document