scholarly journals Prospective pharmacological effects of psoralen photoxidation products and their cycloadducts with aminothiols: chemoinformatic analysis

Author(s):  
VV Skarga ◽  
AD Zadorozhny ◽  
BV Shilov ◽  
EV Nevezhin ◽  
VV Negrebetsky ◽  
...  

Psoralens are medicinal photosensitizing furocoumarins which are used in photochemotherapy and photoimmunotherapy of dermatoses. Psoralen photooxidation products may be involved in therapeutic effects, but the possible mechanisms of their action remain unclear. The study was aimed to assess the prospective pharmacological effects and mechanisms of activity for six previously identified ortho–hydroxyformyl-containing psoralen photooxidation products and their cycloadducts with aminothiols, as well as for structurally similar compounds (furocoumaric acid and tucaresol). Chemoinformatic analysis of the prospective pharmacological effects and mechanisms of action of these compounds was performed using the PASS and PharmaExpert software. The predicted pharmacological effects partially confirmed by previous studies highlight the possible involvement of psoralen photooxidation products in the effects of PUVA therapy or photopheresis during the course of dermatoses and proliferative disorders treatment. A broad spectrum of pharmacological effects found for furocoumaric acid and cycloadducts of coumarinic and benzofuranic photoproducts of psoralen with cysteine and homocysteine appoints new directions of research relating to therapeutic use of psoralens.

Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 140
Author(s):  
Evgeny Shchetinin ◽  
Vladimir Baturin ◽  
Eduard Arushanyan ◽  
Albert Bolatchiev ◽  
Dmitriy Bobryshev

The absence of effective drugs for COVID-19 prevention and treatment requires the search for new candidates among approved medicines. Fundamental studies and clinical observations allow us to approach an understanding of the mechanisms of damage and protection from exposure to SARS-CoV-2, to identify possible points of application for pharmacological interventions. In this review we presented studies on the anti-inflammatory, antioxidant, and immunotropic properties of melatonin. We have attempted to present scientifically proven mechanisms of action for the potential therapeutic use of melatonin during SARS-CoV-2 infection. A wide range of pharmacological properties allows its inclusion as an effective addition to the methods of prevention and treatment of COVID-19.


2019 ◽  
Vol 14 (5) ◽  
pp. 442-452 ◽  
Author(s):  
Wenjie Zheng ◽  
Yumin Yang ◽  
Russel Clive Sequeira ◽  
Colin E. Bishop ◽  
Anthony Atala ◽  
...  

Therapeutic effects of Mesenchymal Stem/Stromal Cells (MSCs) transplantation have been observed in various disease models. However, it is thought that MSCs-mediated effects largely depend on the paracrine manner of secreting cytokines, growth factors, and Extracellular Vesicles (EVs). Similarly, MSCs-derived EVs also showed therapeutic benefits in various liver diseases through alleviating fibrosis, improving regeneration of hepatocytes, and regulating immune activity. This review provides an overview of the MSCs, their EVs, and their therapeutic potential in treating various liver diseases including liver fibrosis, acute and chronic liver injury, and Hepatocellular Carcinoma (HCC). More specifically, the mechanisms by which MSC-EVs induce therapeutic benefits in liver diseases will be covered. In addition, comparisons between MSCs and their EVs were also evaluated as regenerative medicine against liver diseases. While the mechanisms of action and clinical efficacy must continue to be evaluated and verified, MSCs-derived EVs currently show tremendous potential and promise as a regenerative medicine treatment for liver disease in the future.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2930
Author(s):  
Jelena Šuran ◽  
Ivica Cepanec ◽  
Tomislav Mašek ◽  
Božo Radić ◽  
Saša Radić ◽  
...  

Propolis is a honeybee product known for its antioxidant, anti-inflammatory, anticancer, and antimicrobial effects. It is rich in bioactive molecules whose content varies depending on the botanical and geographical origin of propolis. These bioactive molecules have been studied individually and as a part of propolis extracts, as they can be used as representative markers for propolis standardization. Here, we compare the pharmacological effects of representative polyphenols and whole propolis extracts. Based on the literature data, polyphenols and extracts act by suppressing similar targets, from pro-inflammatory TNF/NF-κB to the pro-proliferative MAPK/ERK pathway. In addition, they activate similar antioxidant mechanisms of action, like Nrf2-ARE intracellular antioxidant pathway, and they all have antimicrobial activity. These similarities do not imply that we should attribute the action of propolis solely to the most representative compounds. Moreover, its pharmacological effects will depend on the efficacy of these compounds’ extraction. Thus, we also give an overview of different propolis extraction technologies, from traditional to modern ones, which are environmentally friendlier. These technologies belong to an open research area that needs further effective solutions in terms of well-standardized liquid and solid extracts, which would be reliable in their pharmacological effects, environmentally friendly, and sustainable for production.


2021 ◽  
Vol 20 (3) ◽  
pp. 327-341
Author(s):  
Maximiliano L. Agazzi ◽  
Javier E. Durantini ◽  
Ezequiel D. Quiroga ◽  
M. Gabriela Alvarez ◽  
Edgardo N. Durantini

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 667
Author(s):  
Robert J. Geraghty ◽  
Matthew T. Aliota ◽  
Laurent F. Bonnac

The emergence or re-emergence of viruses with epidemic and/or pandemic potential, such as Ebola, Zika, Middle East Respiratory Syndrome (MERS-CoV), Severe Acute Respiratory Syndrome Coronavirus 1 and 2 (SARS and SARS-CoV-2) viruses, or new strains of influenza represents significant human health threats due to the absence of available treatments. Vaccines represent a key answer to control these viruses. However, in the case of a public health emergency, vaccine development, safety, and partial efficacy concerns may hinder their prompt deployment. Thus, developing broad-spectrum antiviral molecules for a fast response is essential to face an outbreak crisis as well as for bioweapon countermeasures. So far, broad-spectrum antivirals include two main categories: the family of drugs targeting the host-cell machinery essential for virus infection and replication, and the family of drugs directly targeting viruses. Among the molecules directly targeting viruses, nucleoside analogues form an essential class of broad-spectrum antiviral drugs. In this review, we will discuss the interest for broad-spectrum antiviral strategies and their limitations, with an emphasis on virus-targeted, broad-spectrum, antiviral nucleoside analogues and their mechanisms of action.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 282
Author(s):  
Hun Ho Park ◽  
Junseong Park ◽  
Hye Joung Cho ◽  
Jin-Kyoung Shim ◽  
Ju Hyung Moon ◽  
...  

Resident cancer cells with stem cell-like features induce drug tolerance, facilitating survival of glioblastoma (GBM). We previously showed that strategies targeting tumor bioenergetics present a novel emerging avenue for treatment of GBM. The objective of this study was to enhance the therapeutic effects of dual inhibition of tumor bioenergetics by combination of gossypol, an aldehyde dehydrogenase inhibitor, and phenformin, a biguanide compound that depletes oxidative phosphorylation, with the chemotherapeutic drug, temozolomide (TMZ), to block proliferation, stemness, and invasiveness of GBM tumorspheres (TSs). Combination therapy with gossypol, phenformin, and TMZ induced a significant reduction in ATP levels, cell viability, stemness, and invasiveness compared to TMZ monotherapy and dual therapy with gossypol and phenformin. Analysis of differentially expressed genes revealed up-regulation of genes involved in programmed cell death, autophagy, and protein metabolism and down-regulation of those associated with cell metabolism, cycle, and adhesion. Combination of TMZ with dual inhibitors of tumor bioenergetics may, therefore, present an effective strategy against GBM by enhancing therapeutic effects through multiple mechanisms of action.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 650
Author(s):  
Gunsup Lee ◽  
Shailesh Budhathoki ◽  
Geum-Young Lee ◽  
Kwang-ji Oh ◽  
Yeon Kyoung Ham ◽  
...  

The virus behind the current pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the etiology of novel coronavirus disease (COVID-19) and poses a critical public health threat worldwide. Effective therapeutics and vaccines against multiple coronaviruses remain unavailable. Single-chain variable fragment (scFv), a recombinant antibody, exhibits broad-spectrum antiviral activity against DNA and RNA viruses owing to its nucleic acid-hydrolyzing property. The antiviral activity of 3D8 scFv against SARS-CoV-2 and other coronaviruses was evaluated in Vero E6 cell cultures. Viral growth was quantified with quantitative RT-qPCR and plaque assay. The nucleic acid-hydrolyzing activity of 3D8 was assessed through abzyme assays of in vitro viral transcripts and cell viability was determined by MTT assay. We found that 3D8 inhibited the replication of SARS-CoV-2, human coronavirus OC43 (HCoV-OC43), and porcine epidemic diarrhea virus (PEDV). Our results revealed the prophylactic and therapeutic effects of 3D8 scFv against SARS-CoV-2 in Vero E6 cells. Immunoblot and plaque assays showed the reduction of coronavirus nucleoproteins and infectious particles, respectively, in 3D8 scFv-treated cells. These data demonstrate the broad-spectrum antiviral activity of 3D8 against SARS-CoV-2 and other coronaviruses. Thus, it could be considered a potential antiviral countermeasure against SARS-CoV-2 and zoonotic coronaviruses.


2015 ◽  
Vol 32 (8) ◽  
pp. 1170-1182 ◽  
Author(s):  
A. AlQathama ◽  
J. M. Prieto

Natural products continue to provide lead cytotoxic compounds for cancer treatment but less attention has been given to antimigratory compounds. We here systematically and critically survey more than 30 natural products with direct in vitro and in vivo pharmacological effects on migration and/or metastasis of melanoma cells and chart the mechanisms of action for this underexploited property.


1994 ◽  
Vol 180 (1) ◽  
pp. 283-296 ◽  
Author(s):  
V P Vallat ◽  
P Gilleaudeau ◽  
L Battat ◽  
J Wolfe ◽  
R Nabeya ◽  
...  

Psoriasis is characterized by alterations in both the epidermis and dermis of the skin. Epidermal keratinocytes display marked proliferative activation and differentiate along an "alternate" or "regenerative" pathway, while the dermis becomes infiltrated with leukocytes, particularly interleukin 2 (IL-2) receptor-bearing "activated" T cells. Psoralens, administered by the oral route, have therapeutic effects in psoriasis when photochemically activated by ultraviolet A light (PUVA therapy). Recently psoralen bath therapy has been introduced to more effectively deliver this agent to the diseased skin. We have correlated the efficacy of PUVA bath therapy with its effects on specific molecular and cellular parameters of disease, in 10 consecutive patients with recalcitrant psoriasis. Rapid clearing of lesions occurred in 8 out of 10 patients. Biopsies were taken from lesional and nonlesional skin before and after a single round of therapy, and observation was continued in our Clinical Research Center at The Rockefeller University. Enumeration of cycling keratinocytes with the Ki-67 monoclonal antibody showed that PUVA reduced cell proliferation by 73%. The pathological increase in insulin-like growth factor 1 (IGF-1) receptors was reversed, whereas epidermal growth factor (EGF) receptors, which are also increased in psoriasis, remained unchanged. Keratinocyte proteins that are expressed in abnormal sites of the epidermis during psoriasis, i.e., keratin 16, filaggrin, and involucrin, were, after PUVA treatment, localized to their normal sites. Epidermal and dermal T-lymphocytes (CD3+), as well as CD4+, CD8+, and IL-2 receptor+ subsets, were strongly suppressed by PUVA, with virtual elimination of IL-2 receptor+ T cells in some patients. Consistent with diminished lymphocyte activation, HLA-DR expression by epidermal keratinocytes was markedly reduced in treated skin. In comparison to cyclosporine treatment of psoriasis, PUVA therapy leads to more complete reversal of pathological epidermal and lymphocytic activation, changes which we propose to be the cellular basis for a more sustained remission of disease after PUVA treatment.


Sign in / Sign up

Export Citation Format

Share Document