scholarly journals Effect of Organic and Mineral Soil Fractions on Sorption Behaviour of Chlorophenol and Triazine Micropollutants

2009 ◽  
Vol 60 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Sanja Stipičević ◽  
Sanja Fingler ◽  
Vlasta Drevenkar

Effect of Organic and Mineral Soil Fractions on Sorption Behaviour of Chlorophenol and Triazine MicropollutantsThis article compares the sorption behaviour of 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol, pentachlorophenol, chlorotriazine atrazine, methylthiotriazine ametryn, methoxytriazine atratone, hydroxyatrazine, and didelakylated atrazine in a topsoil and an aquifer sediment before and after removal of sorbent organic matter and in humic acid. Freundlich isotherm coefficients Kf and 1/n and free energy change (δG°) were calculated for all compounds in all sorbents. According to sorbent pH values, chlorophenolate anions and uncharged triazine species dominated in all sorption experiments with topsoil and aquifer sediment. In experiments with humic acid, chlorophenols, atrazine, and didealkylated atrazine existed almost completely as neutral species, whereas protonated species dominated for hydroxyatrazine, atratone, and ametryn. In addition to a hydrophobic partition, sorption of all compounds in native soil and sediment sorbents includes specific, more polar interactions, which greatly depend on sorbate acidity/basicity, specific properties of the sorbent organic matter and of mineral surface, as well as on the system pH. A significantly greater sorption intensity of all compounds in "organic-free" than in the native aquifer sediment confirmed the importance and possible dominance of mineral surface in the sorption process. Sorption intensity of chlorophenol and triazine compounds in humic acid was closely related to compound hydrophobicity. Greater sorption of almost completely protonated hydroxyatrazine than of the more hydropohobic but uncharged atrazine indicated different humic acid reaction sites for two compounds and consequently different sorption mechanisms.

Radiocarbon ◽  
2006 ◽  
Vol 48 (3) ◽  
pp. 337-353 ◽  
Author(s):  
Femke H Tonneijck ◽  
Johannes van der Plicht ◽  
Boris Jansen ◽  
Jacobus M Verstraten ◽  
Henry Hooghiemstra

Volcanic ash soils (Andosols) may offer great opportunities for paleoecological studies, as suggested by their characteristic accumulation of organic matter (OM). However, understanding of the chronostratigraphy of soil organic matter (SOM) is required. Therefore, radiocarbon dating of SOM is necessary, but unfortunately not straightforward. Dating of fractions of SOM obtained by alkali-acid extraction is promising, but which fraction (humic acid or humin) renders the most accurate 14C dates is still subject to debate. To determine which fraction should be used for 14C dating of Andosols and to evaluate if the chronostratigraphy of SOM is suitable for paleoecological research, we measured 14C ages of both fractions and related calibrated ages to soil depth for Andosols in northern Ecuador. We compared the time frames covered by the Andosols with those of peat sequences nearby to provide independent evidence. Humic acid (HA) was significantly older than humin, except for the mineral soil samples just beneath a forest floor (organic horizons), where the opposite was true. In peat sections, 14C ages of HA and humin were equally accurate. In the soils, calibrated ages increased significantly with increasing depth. Age inversions and homogenization were not observed at the applied sampling distances. We conclude that in Andosols lacking a thick organic horizon, dating of HA renders the most accurate results, since humin was contaminated by roots. On the other hand, in mineral soil samples just beneath a forest floor, humin ages were more accurate because HA was then contaminated by younger HA illuviated from the organic horizons. Overall, the chronostratigraphy of SOM in the studied Andosols appears to be suitable for paleoecological research.


2020 ◽  
Vol 38 ◽  
Author(s):  
C. ALISTER ◽  
M. ARAYA ◽  
A. CORDOVA ◽  
J. SAAVEDRA ◽  
M. KOGAN

ABSTRACT: Pesticide soil sorption is a primary factor that influences the fate of pesticides in the environment, affecting regulation of microbiological and chemical degradation, volatilization and leaching. The main goal of this research was to study the effect of the organic phase of volcanic soils on sorption of agricultural pesticides. Sorption and desorption of eight agricultural pesticides were studied on eight volcanic soils that varied in the fulvic and humic constituents of their organic matter. For all pesticides, sorption was well described by a Freundlich isotherm where 1/nads values indicated that the sorption mechanism could be mainly explained by physical reactions in all soils. Kf values for carbaryl and flumioxazin were the highest with average values of 7.78 and 7.16 mL g-1, respectively. By contrast, hexazinone and metsulfuron-methyl had the lowest average Kf: 0.86 and 0.81 mL g-1, respectively, indicating that they were the least attracted to the soils. The organic fraction of the soil was the main soil factor related to the sorption of all study pesticides. Particularly, humic acid content regulated the sorption between pesticide and soil, especially through the carboxylic groups.


2019 ◽  
Vol 70 (8) ◽  
pp. 2835-2842 ◽  
Author(s):  
Ion Ion ◽  
Raluca Madalina Senin ◽  
Georgeta Ramona Ivan ◽  
Sanda Maria Doncea ◽  
Michael Patrick Henning ◽  
...  

The adsorption of triclocarban was investigated on pristine and irradiated MWCNTs, at different temperatures, in aqueous synthetic samples at different pH values and for different concentrations of humic acid (HA) from natural organic matter. Commonly used models of the adsorption isotherms, Freundlich and Langmuir were selected to fit the experimental data. The effects of TCC concentration, of the temperature and of the concentration of humic acid from natural organic matter were tested to study the impact of the environmental conditions over the sorption process.


1970 ◽  
Vol 50 (1) ◽  
pp. 17-29 ◽  
Author(s):  
D. W. SMITH

Large amounts of nutrients from the L-H horizons and 0–2 cm of mineral soil were either redistributed at mineral soil depths or removed by leaching within a 15-month period after severe fire in jack pine barren lands in northern Ontario. Losses and redistribution by leaching were attributed to the large decrease in amount of organic matter (79 to 91%) and a decrease in exchange capacity of the L-H horizons as a result of burning. Increased solubility of the nutrients deposited in ash contributed to their vulnerability to leaching.Leaching of sodium, potassium and calcium was greatest during the first 3-month period after fire. Differential leaching resulted from the differing adsorption properties of the cations; more potassium was leached in comparison with calcium. Decreases in levels of extractable iron, aluminum and phosphorus may have been partly the result of their fixation in unavailable form, but leaching was responsible for 48% of the decrease in extractable phosphorus from the surface horizons over the 15-month period.


1996 ◽  
Vol 76 (2) ◽  
pp. 125-131 ◽  
Author(s):  
George R. Gobran ◽  
Stephen Clegg

We propose a conceptual model based on our results from rhizospheric studies of a Norway spruce stand growing on a nutrient poor Podzol in Southwest Sweden. We assume that dynamic linkages exist between three soil fractions: bulk soil, rhizosphere (Rhizo) and soil root interface (SRI). The soil fractions were characterized by organic matter content, electrical conductivity, pH, and soluble and exchangeable cations. Analyses showed great differences among the three soil fractions, especially the properties of the SRI. Cation exchange capacity and base saturation were higher in the rhizosphere and SRI than in the bulk soil. We attribute this to accumulation of organic matter (OM) in the rhizosphere and SRI. Moreover, the rhizosphere and SRI fractions had lower pH and higher titratable acidity than the bulk soil. Any possible negative effects of Al to the roots could be offset by accumulated organic matter and base cations (BC). The calcium-aluminum balance followed a consistent trend: bulk < rhizo < SRI. The results suggest that soil around the roots exhibits a different chemical composition than that of the root-free (bulk) soil, indicating more favorable conditions for roots. We suggest that trees growing on nutrient-poor acid soils invest their energy around roots to create a favorable microenvironment for both roots and microorganisms. Our results suggest that existing models which attempt to connect tree growth to soil acidification need modification. Such modification would include horizontal variation (bulk soil, rhizo and SRI) besides the vertical ones normally emphasized. It is possible that the conceptual model may enable a better understanding and description of naturally existing relationships between soil and plants under normal and stressed conditions. Key words: Conceptual model, organic matter, rhizosphere, soil root interface, acidification and growth models, Norway spruce


2010 ◽  
Vol 59 (1) ◽  
pp. 99-108 ◽  
Author(s):  
M. Takács ◽  
Gy. Füleky

The Hot Water Percolation (HWP) technique for preparing soil extracts has several advantages: it is easily carried out, fast, and several parameters can be measured from the same solution. The object of this study was to examine the possible use of HWP extracts for the characterization of soil organic matter. The HPLC-SEC chromatograms, UV-VIS and fluorescence properties of the HWP extracts were studied and the results were compared with those of the International Humic Substances Society (IHSS) Soil Humic Acid (HA), IHSS Soil Fulvic Acid (FA) and IHSS Suwannee Natural Organic Matter (NOM) standards as well as their HA counterparts isolated by traditional extraction methods from the original soil samples. The DOM of the HWP solution is probably a mixture of organic materials, which have some characteristics similar to the Soil FA fractions and NOM. The HWP extracted organic material can be studied and characterized using simple techniques, like UV-VIS and fluorescence spectroscopy.


2018 ◽  
Vol 69 (5) ◽  
pp. 1233-1239
Author(s):  
Raluca Madalina Senin ◽  
Ion Ion ◽  
Ovidiu Oprea ◽  
Rusandica Stoica ◽  
Rodica Ganea ◽  
...  

In this study, non-irradiated and weathered multiwalled carbon nanotubes (MWCNTs) obtained through irradiation, were studied as adsorbents for BPA, both nanomaterials being characterized before and after the adsorption process. The objectives of our investigation were to compare the characteristics of non-irradiated and irradiated MWCNTs, to evaluate the adsorption capacity of BPA by pristine and irradiated MWCNTs and to determine the variation of the kinetic, sorption and thermodynamic parameters during sorption process using both sorbents.


1996 ◽  
Vol 34 (9) ◽  
pp. 157-164 ◽  
Author(s):  
Kim C.-H. ◽  
M. Hosomi ◽  
A. Murakami ◽  
M. Okada

Effects of clay on fouling due to organic substances and clay were evaluated by model fouling materials and kaolin. Model fouling materials selected were protein, polysaccharide, fulvic acid, humic acid and algogenic matter (EOM:ectracellular organic matter, microbial decomposition products) and kaolin was selected as the clay material. Polysulfone membrane (MWCO(Molecular Weight Cut-Off) 10,000, 50,000 and 200,000) was used as an ultrafiltration membrane. In particular, the flux measurement of solutions containing algogenic matter used an ultrafiltration membrane of MWCO 50,000. The flux of protein and polysaccharide with coexistence of kaolin increased in the case of the ratio of MW/MWCO being greater than one, but did not increase in the case of the MW/MWCO ratio being below one. In contrast, the flux of fulvic acid and humic acid with coextence of kaolin decreased regardless of the ratio of MW/MWCO. The addition of dispersion agent and coagulant in the organic substances and kaolin mixture solution changed the size distribution of kaolin, and resulted in a change of the flux. EOM and microbial decomposition products decreased with the increase of the fraction of organic matter having molecular weight more than MWCO of membrane. The flux of the algogenic organic matter with coexistence of kaolin decreased with the increase of the amount of kaolin. It was suggested that the decline of the flux with coexistence of kaolin was due to the change of the resistance of the kaolin cake layer corresponding to the change in kaolin size distribution with charge.


2000 ◽  
Vol 42 (9) ◽  
pp. 195-201 ◽  
Author(s):  
P. Andreasen ◽  
P. B. Mortensen ◽  
A. Stubsgaard ◽  
B. Langdahl

The stabilisation of a sludge-mineral soil mixture and a method to evaluate the state of stabilisation were investigated. The organic matter and nitrogen content are reduced up to 50% during a stabilisation process of three months under Danish climatic conditions. The stabilisation was shown to be an aerobic process limited by oxygen transport within the mixture. The degree of stabilisation was evaluated by oxygen consumption in a water suspension and the results showed that a stable product was achieved when oxygen consumption was stable and in the level of natural occurring aerobic soils (0.1 mgO2/(g DS*hr). The study thereby demonstrates that a stability of a growth media can be controlled by the oxygen consumption method tested.


Sign in / Sign up

Export Citation Format

Share Document