Non-Absorbable Oral Gentamicin Sulphate: Biopharmaceutical and Dosage Form Evaluation

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
C. Dozie Nwakile ◽  
O.C. Dozie-Nwakile ◽  
E.I. Okoye ◽  
C.E. Umeyor ◽  
E.C. Uronnachi ◽  
...  

Abstract Gentamicin sulphate is an antibiotic belonging to the aminoglycosides and to class III of the Biopharmaceutical Classification System (BCS). Gentamicin sulphate is highly water soluble, but has very low intestinal permeability. The wide use is because of its broad spectrum of activity. In the current study, the suitability of administering gentamicin sulphate orally for local action against susceptible gastrointestinal tract (GIT) bacteria was investigated. The possibility of the drug escaping into the systemic circulation even in the presence of some permeation enhancers was ascertained. Representatives of potential GIT bacteria pathogens were evaluated for their susceptibility to the drug at concentrations obtainable in the GIT using standard microbiological methods. Dose levels that will inhibit these potential bacteria pathogens were also established, as well as the frequency of their administration. Different batches of oral capsules of 250 mg gentamicin sulphate were formulated and their release profiles ascertained using standard methods. The results showed that the selected representatives of the GIT potential pathogenic bacteria were all susceptible to gentamicin sulphate. The drug at its plausible dosage levels of 14.28 mg/kg (1,000 mg/70 kg), 10.71 mg/kg (750 mg/70 kg) and 7.14 mg/kg (500 mg/70 kg) did not cross the mucosal barrier into the systemic circulation even in the presence of some permeation enhancers. The drug's frequency of administration were found to be on 8-hourly bases. Gentamicin sulphate (250 mg) granules formulated with polyethylene glycol (PEG 4000) as granulating aid were quick drying because the granules were not hygroscopic. The formulated gentamicin sulphate capsule batch released enough concentration of the drug that inhibits the test organism within 2 min of dissolution. The above stated doses are acceptable in the dosage form design; it is possible to formulate non-absorbable oral gentamicin sulphate dosage form for local activity in the GIT using existing conventional solid dosage formulating equipment.

2010 ◽  
Vol 80 (45) ◽  
pp. 279-292 ◽  
Author(s):  
Richard Hurrell

Febrile malaria and asymptomatic malaria parasitemia substantially decrease iron absorption in single-meal, stable isotope studies in women and children, but to date there is no evidence of decreased efficacy of iron-fortified foods in malaria-endemic regions. Without inadequate malarial surveillance or health care, giving iron supplements to children in areas of high transmission could increase morbidity and mortality. The most likely explanation is the appearance of non-transferrin-bound iron (NTBI) in the plasma. NTBI forms when the rate of iron influx into the plasma exceeds the rate of iron binding to transferrin. Two studies in women have reported substantially increased NTBI with the ingestion of iron supplements. Our studies confirm this, but found no significant increase in NTBI on consumption of iron-fortified food. It seems likely that the malarial parasite in hepatocytes can utilize NTBI, but it cannot do so in infected erythrocytes. NTBI however may increase the sequestration of parasite-infected erythrocytes in capillaries. Bacteremia is common in children with severe malaria and sequestration in villi capillaries could lead to a breaching of the intestinal barrier, allowing the passage of pathogenic bacteria into the systemic circulation. This is especially important as frequent high iron doses increase the number of pathogens in the intestine at the expense of the barrier bacteria.


Author(s):  
Preethi Sudheer ◽  
Koushik Y ◽  
Satish P ◽  
Uma Shankar M S ◽  
R S Thakur

As a consequence of modern drug discovery techniques, there has been a steady increase in the number of new pharmacologically active lipophilic compounds that are poorly water soluble and solubility is one of the most important parameter to achieve desired concentration of drug in systemic circulation for therapeutic response. It is a great challenge for pharmaceutical scientist to convert those molecules into orally administered formulation with sufficient bioavailability.  Among the several approaches to improve oral bioavailability of these molecules, Self-micron emulsifying drug delivery system (SMEDDS) is one of the approaches usually used to improve the bioavailability of hydrophobic drugs. However, conventional SMEDDS are mostly prepared in a liquid form, which can have several disadvantages. Accordingly, solid SMEDDS (S-SMEDDS) prepared by solidification of liquid/semisolid self-micron emulsifying (SME) ingredients into powders have gained popularity. This article provides an overview of the recent advancements in S-SMEDDS such as methodology, techniques and future research directions.


2021 ◽  
Vol 10 (15) ◽  
pp. 3258
Author(s):  
Cristina Oana Mărginean ◽  
Lorena Elena Meliț ◽  
Maria Oana Săsăran

Helicobacter pylori (H. pylori) carcinogenicity depends on three major factors: bacterial virulence constituents, environmental factors and host’s genetic susceptibility. The relationship between microenvironmental factors and H. pylori virulence factors are incontestable. H. pylori infection has a major impact on both gastric and colonic microbiota. The presence of non-H. pylori bacteria within the gastric ecosystem is particularly important since they might persistently act as an antigenic stimulus or establish a partnership with H. pylori in order to augment the subsequent inflammatory responses. The gastric ecosystem, i.e., microbiota composition in children with H. pylori infection is dominated by Streptoccocus, Neisseria, Rothia and Staphylococcus. The impairment of this ecosystem enhances growth and invasion of different pathogenic bacteria, further impairing the balance between the immune system and mucosal barrier. Moreover, altered microbiota due to H. pylori infection is involved in increasing the gastric T regulatory cells response in children. Since gastric homeostasis is defined by the partnership between commensal bacteria and host’s immune system, this review is focused on how pathogen recognition through toll-like receptors (TLRs—an essential class of pathogen recognition receptors—PRRs) on the surface of macrophages and dendritic cells impact the immune response in the setting of H. pylori infection. Further studies are required for delineate precise role of bacterial community features and of immune system components.


2021 ◽  
Author(s):  
Wenxia Wang ◽  
Xiaoting Liang ◽  
Junxia Zheng ◽  
Qi He

Abstract In this work, we systematically investigate the sterilization effect of six kinds of commonly used commercial disinfectants, including the DuPont Virkon disinfectant, peracetic acid disinfectant, sodium hypochlorite, bromogeramine disinfectant, water-soluble allicin, and absolute ethanol, against the Escherichia coli, Staphylococcus aureus, Monilia albican and Clostridium sporogenes. The inhibition zone was used to qualitatively determine the antibacterial effects of the six disinfectants, and then the minimum two-fold dilution method was used to quantitatively determine the minimum inhibitory concentration and minimum bactericidal concentration of the six disinfectants on the four pathogens. The result illustrated that the antibacterial effect of peracetic acid disinfectant is the best, and clostridium sporogenes is the most sensitive to it, followed by bromogermine disinfectant, which can inhibit the four pathogenic bacteria at the concentration recommended by the manufacturer. The antibacterial effect of DuPont Virkon disinfectant, sodium hypochlorite, water-soluble allicin and absolute ethanol is not as good as expected, and cannot inhibit the four kinds of pathogenic bacteria at the recommended concentration. In summary, the antibacterial effect of peracetic acid disinfectant is the strongest, followed by the bromogermine disinfectant, DuPont Virkon disinfectant, sodium hypochlorite and water-soluble allicin. The absolute ethanol exhibits the worst antibacterial properties.


2014 ◽  
Vol 5 (1) ◽  
pp. 38-42 ◽  
Author(s):  
Sophie Poole ◽  
Sim K Singhrao ◽  
St John Crean

Periodontal disease (PD) is an inflammatory disease affecting tooth-supporting tissues in which interaction of specific bacteria and the host’s immune responses play a pivotal role. The pathogenic bacteria associated with PD are a source of systemic inflammation as they have the ability to enter systemic circulation during everyday tasks such as brushing teeth and chewing food. Alzheimer’s disease (AD) is a form of dementia whereby inflammation is thought to play a key role in its pathogenesis and the risk of developing the disease increasing with age. The exact aetiology of the late-onset AD is unknown but peripheral infections are being considered as a potential risk factor.


2021 ◽  
Vol 74 (9) ◽  
pp. 2109-2111
Author(s):  
Evheniia A. Shtaniuk ◽  
Oleksandra O. Vovk ◽  
Larisa V. Krasnikova ◽  
Yuliia I. Polyvianna ◽  
Tetiana I. Kovalenko

The aim: Study of antibacterial activity of the preparations, containing antiseptic dioxidine and antibiotic levofloxacin in vitro on standard strains of main optional-anaerobic pathogens of purulent-inflammatory processes of surgical wounds S. aureus, E. coli, P. aeruginosa and definition of more effective ones on them. Materials and methods: Solutions of dioxidine 1.2 %, dioxidine 1.2% with decamethaxin, Dioxisole, water soluble ointment with dioxidine 1.2% and levofloxacin 0.1% with decamethaxin were used in experiment. Antibacterial activity was studied on standard strains of S. aureus АТСС 25923, E. coli АТСС 25922, P. aeruginosa АТСС 27853. Distinguishing and identification of pure cultures of bacteria was done according to generally accepted microbiological methods. Determination of purulent-inflammatory processes pathogens sensitivity was done by disco-diffuse method on Mueller-Hinton medium. Antibacterial activity of solutions and ointments was studied with the help of agar diffusion method (“well” method) according to methodic recommendations. Each investigation was repeated 6 times. Method of variation statistics was used for the research results analysis. Results: All antibacterial preparations under study are effective and highly effective on S. aureus АТСС 25923, E. coli АТСС 25922, P. aeruginosa АТСС 27853. Solution with 1.2 % dioxidine with decamethaxin and ointment with 0.1 % levofloxacin and decamethaxin have larger growth retardation zones towards S. aureus and P. aeruginosa. E. coli strains are more sensitive to the solution of Dioxisole and ointment with 1.2 % dioxidine. Conclusions: All strains are sensitive, most of them are highly sensitive, up to 5 antibacterial preparations under study in vitro.


2021 ◽  
Author(s):  
Ruby Harsent ◽  
Paul Smith ◽  
James Arthur Blaxland ◽  
Neil Rushmere

Abstract BackgroundUsers of prosthetic devices face the accumulation of potentially drug-resistant pathogenic bacteria on the skin/prosthesis interface. In this study, we took surface swabs of the skin/prosthesis interface of eleven disabled athletes to identify microorganisms present. In addition to determining their antimicrobial resistance profile, we assessed their sensitivity to Manuka honey and Garlic extract (allicin) MethodsEleven volunteers were directed to swab the skin at the skin/prosthesis interface. After initial isolation of microorganisms we employed the following general microbiological methods; Gram stain, Catalase test, Oxidase test, lactose fermenting capability, haemolytic capability, Staphaurex, mannitol fermenting capability, Streptex; API Staph, 20E, Candida, and BBL crystal identification system tests. Once identified, isolates were analysed for their sensitivity to penicillin, erythromycin. ampicillin, vancomycin, ceftazidime, ciprofloxacin, gentamicin and colistin-sulphate. Isolates were also analysed for their sensitivity to allicin (Garlic Extract (GE)) and Manuka honey (Medihoney™) (MH). ResultsEleven isolates were identified, Bacillus cereus, Staphylococcus haemolyticus, Staphylococcus aureus, Micrococcus luteus, Pseudomonas oryzihabitans, Micrococcus spp., Bacillus subtilis, Group D Streptococcus, Pantoea spp., Enterobacter cloacae and Bergyella zoohelcum. All Gram-positive organisms were resistant to 1.5 units of penicillin and 10 μg of ampicillin, and two Gram-negatives Pseudomonas oryzihabitans and Bergyella zoohelcum were resistant to 10 μg ceftazidime, whilst Bergyella zoohelcum, was also resistant to 10 μg of gentamicin. In comparison, all organisms were sensitive to Manuka honey and nine sensitive to Allicin. ConclusionsThis study highlights the prevalence of uncommon drug resistant microorganisms on the skin within a vulnerable population, highlighting the potential for MH or GE intervention.


2018 ◽  
Vol 132 (9) ◽  
pp. 959-983 ◽  
Author(s):  
Karlhans Fru Che ◽  
Ellen Tufvesson ◽  
Sara Tengvall ◽  
Elisa Lappi-Blanco ◽  
Riitta Kaarteenaho ◽  
...  

Long-term tobacco smokers with chronic obstructive pulmonary disease (COPD) or chronic bronchitis display an excessive accumulation of neutrophils in the airways; an inflammation that responds poorly to established therapy. Thus, there is a need to identify new molecular targets for the development of effective therapy. Here, we hypothesized that the neutrophil-mobilizing cytokine interleukin (IL)-26 (IL-26) is involved in airway inflammation amongst long-term tobacco smokers with or without COPD, chronic bronchitis or colonization by pathogenic bacteria. By analyzing bronchoalveolar lavage (BAL), bronchail wash (BW) and induced sputum (IS) samples, we found increased extracellular IL-26 protein in the airways of long-term smokers in vivo without further increase amongst those with clinically stable COPD. In human alveolar macrophages (AM) in vitro, the exposure to water-soluble tobacco smoke components (WTC) enhanced IL-26 gene and protein. In this cell model, the same exposure increased gene expression of the IL-26 receptor complex (IL10R2 and IL20R1) and nuclear factor κ B (NF-κB); a proven regulator of IL-26 production. In the same cell model, recombinant human IL-26 in vitro caused a concentration-dependent increase in the gene expression of NF-κB and several pro-inflammatory cytokines. In the long-term smokers, we also observed that extracellular IL-26 protein in BAL samples correlates with measures of lung function, tobacco load, and several markers of neutrophil accumulation. Extracellular IL-26 was further increased in long-term smokers with exacerbations of COPD (IS samples), with chronic bronchitis (BAL samples ) or with colonization by pathogenic bacteria (IS and BW samples). Thus, IL-26 in the airways emerges as a promising target for improving the understanding of the pathogenic mechanisms behind several pulmonary morbidities in long-term tobacco smokers.


Sign in / Sign up

Export Citation Format

Share Document