scholarly journals Prenatal programming of the small intestine in piglets: the effect of supplementation with 3-hydroxy-3-methylbutyric acid (HMB) in pregnant sows on the structure of jejunum of their offspring

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ewa Tomaszewska ◽  
Łukasz Prost ◽  
Piotr Dobrowolski ◽  
Deepesh K. P. Chand ◽  
Janine Donaldson ◽  
...  

Abstract When discussing the scale of the occurrence of diseases of the digestive system in farm animals, particularly pigs in the weaning period, it may be beneficial to study physiological and nutritional factors that could potentially affect the growth, development, and modelling of the structure and function of the digestive tract. Taking into account the reports on the beneficial effects of ß-hydroxy-ß-methylbutyrate (HMB) administration in the prenatal period on the development of various systems it was assumed that the HMB supplementation to pregnant sows can influence intestinal development in the offspring during weaning. Thus, the present experiment was conducted to evaluate the effect of HMB treatment of pregnant sows on jejunum development in offspring at weaning. From 70th day until the 90th day of gestation, sows received either a basal diet (n = 12) or the same diet supplemented with HMB (n = 12) at the dose of 0.2 g/kg of body weight/day. HMB given during prenatal time reduced the thickness of the longitudinal muscle; the apoptotic cell index in epithelium also significantly decreased after the HMB supplementation. Vasoactive intestinal (poly)peptide (VIP) expression in submucosal ganglia significantly increases in prenatally HMB treated piglets. The same strong reaction was observed with the expression of occludin, claudin-3, E-cadherin, and leptin in the jejunal epithelium. The obtained results indicate that the administration of HMB to pregnant sows significantly influenced the expression of VIP, leptin and some proteins of the intestinal barrier of their offspring less influencing the basal morphology.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ewa Tomaszewska ◽  
Łukasz Prost ◽  
Piotr Dobrowolski ◽  
Deepesh K.P. Chand ◽  
Janine Donaldson ◽  
...  

Abstract When discussing the scale of the occurrence of diseases of the digestive system in farm animals, particularly pigs in the weaning period, it may be beneficial to study physiological and nutritional factors that could potentially affect the growth, development, and modelling of the structure and function of the digestive tract. Taking into account the reports on the beneficial effects of ß-hydroxy-ß-methylbutyrate (HMB) administration in the prenatal period on the development of various systems it was assumed that the HMB supplementation to pregnant sows can influence intestinal development in the offspring during weaning. Thus, the present experiment was conducted to evaluate the effect of HMB treatment of pregnant sows on jejunum development in offspring at weaning. From 70th day until the 90th day of gestation, sows received either a basal diet (n = 12) or the same diet supplemented with HMB (n = 12) at the dose of 0.2 g/kg of body weight/day. HMB given during prenatal time reduced the thickness of the longitudinal muscle; the apoptotic cell index in epithelium also significantly decreased after the HMB supplementation. Vasoactive intestinal (poly)peptide (VIP) expression in submucosal ganglia significantly increases in prenatally HMB treated piglets. The same strong reaction was observed with the expression of occludin, claudin-3, E-cadherin, and leptin in the jejunal epithelium. The obtained results indicate that the administration of HMB to pregnant sows significantly influenced the expression of VIP, leptin and some proteins of the intestinal barrier of their offspring less influencing the basal morphology.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2715
Author(s):  
Rodica Ana Ungur ◽  
Viorela Mihaela Ciortea ◽  
Laszlo Irsay ◽  
Alina Deniza Ciubean ◽  
Bogdana Adriana Năsui ◽  
...  

The non-steroidal anti-inflammatory drugs (NSAIDs) are the most used drugs in knee OA (osteoarthritis) treatment. Despite their efficiency in pain and inflammation alleviation, NSAIDs accumulate in the environment as chemical pollutants and have numerous genetic, morphologic, and functional negative effects on plants and animals. Ultrasound (US) therapy can improve pain, inflammation, and function in knee OA, without impact on environment, and with supplementary metabolic beneficial effects on cartilage compared to NSAIDs. These features recommend US therapy as alternative for NSAIDs use in knee OA treatment.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 160
Author(s):  
Vladana Domazetovic ◽  
Irene Falsetti ◽  
Caterina Viglianisi ◽  
Kristian Vasa ◽  
Cinzia Aurilia ◽  
...  

Vitamin E, a fat-soluble compound, possesses both antioxidant and non-antioxidant properties. In this study we evaluated, in intestinal HT29 cells, the role of natural tocopherols, α-Toc and δ-Toc, and two semi-synthetic derivatives, namely bis-δ-Toc sulfide (δ-Toc)2S and bis-δ-Toc disulfide (δ-Toc)2S2, on TNFα-induced oxidative stress, and intercellular adhesion molecule-1 (ICAM-1) and claudin-2 (Cl-2) expression. The role of tocopherols was compared to that of N-acetylcysteine (NAC), an antioxidant precursor of glutathione synthesis. The results show that all tocopherol containing derivatives used, prevented TNFα-induced oxidative stress and the increase of ICAM-1 and Cl-2 expression, and that (δ-Toc)2S and (δ-Toc)2S2 are more effective than δ-Toc and α-Toc. The beneficial effects demonstrated were due to tocopherol antioxidant properties, but suppression of TNFα-induced Cl-2 expression seems not only to be related with antioxidant ability. Indeed, while ICAM-1 expression is strongly related to the intracellular redox state, Cl-2 expression is TNFα-up-regulated by both redox and non-redox dependent mechanisms. Since ICAM-1 and Cl-2 increase intestinal bowel diseases, and cause excessive recruitment of immune cells and alteration of the intestinal barrier, natural and, above all, semi-synthetic tocopherols may have a potential role as a therapeutic support against intestinal chronic inflammation, in which TNFα represents an important proinflammatory mediator.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 818
Author(s):  
Soraya Mousavi ◽  
Dennis Weschka ◽  
Stefan Bereswill ◽  
Markus Heimesaat

Human campylobacteriosis, commonly caused by Campylobacter jejuni, is a food-borne infection with rising prevalence causing significant health and socioeconomic burdens worldwide. Given the threat from emerging antimicrobial resistances, the treatment of infectious diseases with antibiotics-independent natural compounds is utmost appreciated. Since the health-beneficial effects of cumin-essential-oil (EO) have been known for centuries, its potential anti-pathogenic and immune-modulatory effects during acute experimental campylobacteriosis were addressed in the present study. Therefore, C. jejuni-challenged secondary abiotic IL-10-/- mice were treated perorally with either cumin-EO or placebo starting on day 2 post-infection. On day 6 post-infection, cumin-EO treated mice harbored lower ileal pathogen numbers and exhibited a better clinical outcome when compared to placebo controls. Furthermore, cumin-EO treatment alleviated enteropathogen-induced apoptotic cell responses in colonic epithelia. Whereas, on day 6 post-infection, a dampened secretion of pro-inflammatory mediators, including nitric oxide and IFN-γ to basal levels, could be assessed in mesenteric lymph nodes of cumin-EO treated mice, systemic MCP-1 concentrations were elevated in placebo counterparts only. In conclusion, our preclinical intervention study provides first evidence for promising immune-modulatory effects of cumin-EO in the combat of human campylobacteriosis. Future studies should address antimicrobial and immune-modulatory effects of natural compounds as adjunct antibiotics-independent treatment option for infectious diseases.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 850
Author(s):  
María Ángeles Martín ◽  
Sonia Ramos

Flavanols are natural occurring polyphenols abundant in fruits and vegetables to which have been attributed to beneficial effects on health, and also against metabolic diseases, such as diabetes, obesity and metabolic syndrome. These positive properties have been associated to the modulation of different molecular pathways, and importantly, to the regulation of immunological reactions (pro-inflammatory cytokines, chemokines, adhesion molecules, nuclear factor-κB [NF-κB], inducible enzymes), and the activity of cells of the immune system. In addition, flavanols can modulate the composition and function of gut microbiome in a prebiotic-like manner, resulting in the positive regulation of metabolic pathways and immune responses, and reduction of low-grade chronic inflammation. Moreover, the biotransformation of flavanols by gut bacteria increases their bioavailability generating a number of metabolites with potential to affect human metabolism, including during metabolic diseases. However, the exact mechanisms by which flavanols act on the microbiota and immune system to influence health and disease remain unclear, especially in humans where these connections have been scarcely explored. This review seeks to summarize recent advances on the complex interaction of flavanols with gut microbiota, immunity and inflammation focus on metabolic diseases.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 1016
Author(s):  
María Jesús Rodríguez-Sojo ◽  
Antonio Jesús Ruiz-Malagón ◽  
María Elena Rodríguez-Cabezas ◽  
Julio Gálvez ◽  
Alba Rodríguez-Nogales

Probiotics microorganisms exert their health-associated activities through some of the following general actions: competitive exclusion, enhancement of intestinal barrier function, production of bacteriocins, improvement of altered microbiota, and modulation of the immune response. Among them, Limosilactobacillus fermentum CECT5716 has become one of the most promising probiotics and it has been described to possess potential beneficial effects on inflammatory processes and immunological alterations. Different studies, preclinical and clinical trials, have evidenced its anti-inflammatory and immunomodulatory properties and elucidated the precise mechanisms of action involved in its beneficial effects. Therefore, the aim of this review is to provide an updated overview of the effect on host health, mechanisms, and future therapeutic approaches.


Author(s):  
Alison N Beloshapka ◽  
Tzu-Wen L Cross ◽  
Kelly S Swanson

Abstract Resistant starch (RS) is fermentable by gut microbiota and effectively modulates fecal short-chain fatty acid concentrations in pigs, mice, and humans. RS may have similar beneficial effects on the canine gut, but has not been well studied. The objective of this study was to evaluate the effects of 0, 1, 2, 3, and 4% dietary RS (Hi-maize 260) on apparent total tract macronutrient digestibility, and fecal characteristics, fermentative end-product concentrations, and microbiota of healthy adult dogs. An incomplete 5 x 5 Latin square design with 7 dogs and 5 experimental periods was used, with each treatment period lasting 21 d (d 0-17 adaptation; d 18-21 fresh and total fecal collection) and each dog serving as its own control. Seven dogs (mean age = 5.3 yr; mean BW = 20 kg) were randomly allotted to one of five treatments formulated to be iso-energetic and consisting of graded amounts of 100% amylopectin cornstarch, RS, and cellulose, and fed as a top dressing on the food each day. All dogs were fed the same amount of a basal diet throughout the study and fresh water was offered ad libitum. The basal diet contained 6.25% RS (DM basis), contributing approximately 18.3 g of RS/d based on their daily food intake (292.5 g DM/d). Data were evaluated for linear and quadratic effects using SAS. The treatments included 0%, 1%, 2%, 3%, and 4% of an additional RS source. Because Hi-maize 260 is approximately 40% digestible and 60% indigestible starch, the dogs received the following amounts of RS daily: 0% = 18.3 g (18.3 g + 0 g); 1% = 20.1 g (18.3 g + 1.8 g); 2% = 21.9 g (18.3 g + 3.6 g); 3% = 23.7 g (18.3 g + 5.4 g); and 4% = 25.5 g (18.3 g + 7.2 g). Apparent total tract dry matter, organic matter, crude protein, fat, and gross energy digestibilities and fecal pH were linearly decreased (P < 0.05) with increased RS consumption. Fecal output was linearly increased (P < 0.05) with increased RS consumption. Fecal scores and fecal fermentative end-product concentrations were not affected by RS consumption. Although most fecal microbial taxa were not altered, Faecalibacterium were increased (P < 0.05) with increased RS consumption. The decrease in fecal pH and increase in fecal Faecalibacterium would be viewed as being beneficial to gastrointestinal health. Although our results seem to indicate that RS is poorly and/or slowly fermentable in dogs, the lack of observed change may have been due to the rather high level of RS contained in the basal diet.


2021 ◽  
Vol 9 (3) ◽  
pp. 547
Author(s):  
Daniel Sánchez ◽  
Iva Hoffmanová ◽  
Adéla Szczepanková ◽  
Věra Hábová ◽  
Helena Tlaskalová-Hogenová

The ingestion of wheat gliadin (alcohol-soluble proteins, an integral part of wheat gluten) and related proteins induce, in genetically predisposed individuals, celiac disease (CD), which is characterized by immune-mediated impairment of the small intestinal mucosa. The lifelong omission of gluten and related grain proteins, i.e., a gluten-free diet (GFD), is at present the only therapy for CD. Although a GFD usually reduces CD symptoms, it does not entirely restore the small intestinal mucosa to a fully healthy state. Recently, the participation of microbial components in pathogenetic mechanisms of celiac disease was suggested. The present review provides information on infectious diseases associated with CD and the putative role of infections in CD development. Moreover, the involvement of the microbiota as a factor contributing to pathological changes in the intestine is discussed. Attention is paid to the mechanisms by which microbes and their components affect mucosal immunity, including tolerance to food antigens. Modulation of microbiota composition and function and the potential beneficial effects of probiotics in celiac disease are discussed.


Sign in / Sign up

Export Citation Format

Share Document