scholarly journals The role of ozone therapy in maintaining the articular function and in relieving the pain for patients with knee osteoarthritis

2014 ◽  
Vol 20 (1) ◽  
pp. 25-29 ◽  
Author(s):  
Ciobotaru Camelia ◽  
Iliescu Madalina ◽  
Mandru Tatiana ◽  
Panait Marilena ◽  
Arghir Oana

ABSTRACT Ozone Therapy is thought to be a non-pharmacological therapy, which makes use of oxygen and ozone, It is based on the ozone characteristics, such as the antibacterial and antimycotic, anti-inflammatory and immunomodulatory, of systemic modulation of homeostasy and of the optimization of the way the organs and systems function, but also of tissue bionourishing. Some of the beneficial effects of the ozone are: the enhancement of the oxygen supply in the tissues affected by inflammation and pain, the increase of the blood stream and the removal of the metabolic waste in the joints affected, the obstruction of the substances which maintain the inflammation and pain, an immunomodulatory action upon the whole body, the stimulation of the health improving mechanisms in the body, a mio-relaxing action and thus, a better joint mobility and a better body system functioning

1991 ◽  
Vol 158 (1) ◽  
pp. 97-116 ◽  
Author(s):  
G. P. Ferguson ◽  
P. R. Benjamin

The role of centrally located motoneurones in producing the whole-body withdrawal response of Lymnaea stagnalis (L.) was investigated. The motoneurones innervating the muscles used during whole-body withdrawal, the columellar muscle (CM) and the dorsal longitudinal muscle (DLM) were cells with a high resting potential (−60 to −70 mV) and thus a high threshold for spike initiation. In both semi-intact and isolated brain preparations these motoneurones showed very little spontaneous spike activity. When spontaneous firing was seen it could be correlated with the occurrence of two types of spontaneous excitatory postsynaptic potential (EPSP). One was a unitary EPSP that occasionally caused the initiation of single action potentials. The second was a larger-amplitude, long-duration (presumably compound) EPSP that caused the motoneurones to fire a burst of high-frequency action potentials. This second type of EPSP activity was associated with spontaneous longitudinal contractions of the body in semi-intact preparations. Tactile stimulation of the skin of Lymnaea evoked EPSPs in the CM and DLM motoneurones and in some other identified cells. These EPSPs summated and usually caused the motoneurone to fire action potentials, thus activating the withdrawal response muscles and causing longitudinal contraction of the semi-intact animal. Stimulating different areas of the body wall demonstrated that there was considerable sensory convergence on the side of the body ipsilateral to stimulation, but less on the contralateral side. Photic (light off) stimulation of the skin of Lymnaea also initiated EPSPs in CM and DLM motoneurones and in some other identified cells in the central nervous system (CNS). Cutting central nerves demonstrated that the reception of this sensory input was mediated by dermal photoreceptors distributed throughout the epidermis. The activation of the CM and DLM motoneurones by sensory input of the modalities that normally cause the whole-body withdrawal of the intact animal demonstrates that these motoneurones have the appropriate electrophysiological properties for the role of mediating whole-body withdrawal.


Author(s):  
L. V. Antipova ◽  
S. A. Storublevtsev ◽  
A. A. Getmanova

In the process of life of the body continuously consumed nutrients that perform plastic and energy functions. The source of nutrients is a variety of foods, consisting of a complex of proteins, fats and carbohydrates, which in the process of digestion are converted into digestible substances. Collagen is the basis of connective tissue and binds the cells in the tissues, creates the frame of the whole body. The gastrointestinal tract, as a system of organs, is no exception and is designed process and extract nutrients from food. Most organs consist of connective tissue, accounting for 60–90% of their mass, which confirms its importance and the role of collagen in this regard can not be estimated. Collagen functions in the body are diverse, one of the main - part in digestion, the violation of which is the cause of diseases such as gastritis and ulcers. For the prevention and treatment of such diseases are very useful liquid collagen-containing food in the form of functional drinks. Developed and obtained in the experimental laboratory a variety of drinks on a collagen basis, with the use of additional broth with sea buckthorn pulp, tincture of dried chicory root powder and broth with the flesh of Jerusalem artichoke. An invaluable contribution to the therapeutic and preventive actions of all these components is proved not only scientifically, but also time-tested.


Author(s):  
Nicola J. Smith

Focusing on Victorian England, this chapter examines how sex was increasingly constructed as something that was primarily biological in nature, and how this was bound up with discourses of prostitution as a threat to the reproduction of the body politic. In the first section, the author considers how the pathologization of commercial sex as abnormal and unhealthy worked to naturalize the public/private split on which capitalist development rested. In the second section, the author connects the medical, moral, and juridical regulation of sex work to the suppression and stimulation of other modes of sexual deviance including homosexuality. In the final section, the author explores the role of race and empire in constituting white, bourgeois sexuality as natural, privileged, and the antithesis of commercialized sex.


2018 ◽  
Vol 19 (11) ◽  
pp. 3528 ◽  
Author(s):  
Masashi Narazaki ◽  
Tadamitsu Kishimoto

Interleukein-6 (IL-6), is produced locally from infectious or injured lesions and is delivered to the whole body via the blood stream, promptly activating the host defense system to perform diverse functions. However, excessive or sustained production of IL-6 is involved in various diseases. In diseases, the IL-6 inhibitory strategy begins with the development of the anti-IL-6 receptor antibody, tocilizumab (TCZ). This antibody has shown remarkable effects on Castleman disease, rheumatoid arthritis and juvenile idiopathic arthritis. In 2017, TCZ was proven to work effectively against giant cell arteritis, Takayasu arteritis and cytokine releasing syndrome, initiating a new era for the treatment of these diseases. In this study, the defensive functions of IL-6 and various pathological conditions are compared. Further, the diseases of which TCZ has been approved for treatment are summarized, the updated results of increasing off-label use of TCZ for various diseases are reviewed and the conditions for which IL-6 inhibition might have a beneficial role are discussed. Given the involvement of IL-6 in many pathologies, the diseases that can be improved by IL-6 inhibition will expand. However, the important role of IL-6 in host defense should always be kept in mind in clinical practice.


2012 ◽  
Vol 302 (11) ◽  
pp. R1235-R1249 ◽  
Author(s):  
Sara Stridh ◽  
Fredrik Palm ◽  
Peter Hansell

The glycosaminoglycan (GAG) hyaluronan (HA) is recognized as an important structural component of the extracellular matrix, but it also interacts with cells during embryonic development, wound healing, inflammation, and cancer; i.e., important features in normal and pathological conditions. The specific physicochemical properties of HA enable a unique hydration capacity, and in the last decade it was revealed that in the interstitium of the renal medulla, where the HA content is very high, it changes rapidly depending on the body hydration status while the HA content of the cortex remains unchanged at very low amounts. The kidney, which regulates fluid balance, uses HA dynamically for the regulation of whole body fluid homeostasis. Renomedullary HA elevation occurs in response to hydration and during dehydration the opposite occurs. The HA-induced alterations in the physicochemical characteristics of the interstitial space affects fluid flux; i.e., reabsorption. Antidiuretic hormone, nitric oxide, angiotensin II, and prostaglandins are classical hormones/compounds involved in renal fluid handling and are important regulators of HA turnover during variations in hydration status. One major producer of HA in the kidney is the renomedullary interstitial cell, which displays receptors and/or synthesis enzymes for the hormones mentioned above. During several kidney disease states, such as ischemia-reperfusion injury, tubulointerstitial inflammation, renal transplant rejection, diabetes, and kidney stone formation, HA is upregulated, which contributes to an abnormal phenotype. In these situations, cytokines and other growth factors are important stimulators. The immunosuppressant agent cyclosporine A is nephrotoxic and induces HA accumulation, which could be involved in graft rejection and edema formation. The use of hyaluronidase to reduce pathologically overexpressed levels of tissue HA is a potential therapeutic tool since diuretics are less efficient in removing water bound to HA in the interstitium. Although the majority of data describing the role of HA originate from animal and cell studies, the available data from humans demonstrate that an upregulation of HA also occurs in diabetic kidneys, in transplant-rejected kidneys, and during acute tubular necrosis. This review summarizes the current knowledge regarding interstitial HA in the role of regulating kidney function during normal and pathological conditions. It encompasses mechanistic insights into the background of the heterogeneous intrarenal distribution of HA; i.e., late nephrogenesis, its regulation during variations in hydration status, and its involvement during several pathological conditions. Changes in hyaluronan synthases, hyaluronidases, and binding receptor expression are discussed in parallel.


2016 ◽  
Vol 22 (3) ◽  
pp. 369-373 ◽  
Author(s):  
Gholamreza Kordafshari ◽  
Mohammad Reza Shams Ardakani ◽  
Mansoor Keshavarz ◽  
Mohammad Mehdi Esfahani ◽  
Esmaeil Nazem ◽  
...  

Dizziness and vertigo are the most common complaints of patients that has a high economic burden on the health system. In modern medicine, treatment for dizziness and vertigo consists of chemical pharmacological therapy. Although these drugs are useful in controlling the disease, their side effects and inefficiency in full control of the disease require the use of complementary medicine in this field. Persian medicine consists of valuable experiences of Persian medicine scholars based on the theory of humors and temperaments. In Persian medicine, 2 types of disease are presented: dizziness ( sadar) and vertigo ( dovar). Persian medicine physicians expressed a different mechanism of action than modern medicine for these diseases. They believed that accumulation of abnormal humors, reeh (normal bloating) or causative pathologic substances, is the basic cause of sadar and dovar and that the most important treatment is cleansing the body, particularly the head from accumulated substances by bloodletting methods.


The object of this enquiry is to find out how much heat can be gained, or cold lost from the body, by the local cooling or warming of a small part, by cooling the hands in a stream of cold water, warming the feet in a hot foot­ bath, or by a foot-warmer. In order to secure the beneficial effect of open windows, the breathing of cool air of low-vapour tension, and stimulation of body metabolism by such air ventilating the clothed and naked parts of the skin, the general heating of rooms by hot-water coils might be replaced by small heaters kept a few degrees above body temperature and locally applied to each individual, and each under the individual’s control. Electric heaters have been used by aeroplanists placed beneath their outer garments. One of us(l) recently published results showing that heating or cooling the hands can effectively heat or cool the whole body. We record further experiments of a like nature.


Author(s):  
Dianne M. Perez

The α1-adrenergic receptors (ARs) are G-protein coupled receptors that bind the endogenous catecholamines, norepinephrine, and epinephrine. They play a key role in the regulation of the sympathetic nervous system along with β and α2-AR family members. While all of the adrenergic receptors bind with similar affinity to the catecholamines, they can regulate different physiologies and pathophysiologies in the body because they couple to different G-proteins and signal transduction pathways, commonly in opposition to one another. While α1-AR subtypes (α1A, α1B, α1C) have long been known to be primary regulators of vascular smooth muscle contraction, blood pressure, and cardiac hypertrophy, their role in neurotransmission, improving cognition, protecting the heart during ischemia and failure, and regulating whole body and organ metabolism are not well known and are more recent developments. These advancements have been made possible through the development of transgenic and knockout mouse models and more selective ligands to advance their research. Here, we will review the recent literature to provide new insights into these physiological functions and possible use as a therapeutic target.


1997 ◽  
Vol 272 (5) ◽  
pp. R1525-R1531 ◽  
Author(s):  
J. P. Lynch ◽  
M. M. Wojnar ◽  
C. H. Lang

The purpose of the present study was to determine the role of the ventromedial hypothalamus (VMH) in regulating counter-regulatory hormone release and the increase in glucose flux that is observed after injection of endotoxin [lipopolysaccharide (LPS)]. Bilateral lesions of the VMH were produced electrolytically 2 wk before the experiment; sham-operated rats served as controls. [3-3H]glucose was infused to assess whole body glucose flux before and for 4 h after intravenous injection of Escherichia coli LPS. In control rats, LPS increased the plasma concentrations of glucose and lactate and the rates of glucose appearance and disappearance. In these animals, LPS also produced sustained elevations in corticosterone, glucagon, and catecholamines. In contrast, the glucose metabolic response to LPS was attenuated by > 50% in VMH-lesioned rats. These changes were associated with a blunted increase in the plasma concentration of glucagon, epinephrine, and norepinephrine in VMH-lesioned rats compared with control animals. There was no difference in the plasma concentrations of corticosterone or TNF-alpha between the two groups after LPS or the responsiveness of sham- and VMH-lesioned rats to an infusion of either glucagon or epinephrine. These data indicate that the VMH plays a central role in regulating the secretion of glucagon and catecholamines and the stimulation of glucose flux after LPS.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Laura Galbusera ◽  
Michael T. M. Finn ◽  
Wolfgang Tschacher ◽  
Miriam Kyselo

Abstract The social benefits of interpersonal synchrony are widely recognized. Yet, little is known about its impact on the self. According to enactive cognitive science, the human self for its stability and regulation needs to balance social attunement with disengagement from others. Too much interpersonal synchrony is considered detrimental for a person’s ability to self-regulate. In this study, 66 adults took part in the Body-Conversation Task (BCT), a dyadic movement task promoting spontaneous social interaction. Using whole-body behavioural imaging, we investigated the simultaneous impact of interpersonal synchrony (between persons) and intrapersonal synchrony (within a person) on positive affect and self-regulation of affect. We hypothesized that interpersonal synchrony’s known tendency to increase positive affect would have a trade-off, decreasing a person’s ability to self-regulate affect. Interpersonal synchrony predicted an increase in positive affect. Consistent with our hypothesis, it simultaneously predicted a weakening in self-regulation of affect. Intrapersonal synchrony, however, tended to oppose these effects. Our findings challenge the widespread belief that harmony with others has only beneficial effects, pointing to the need to better understand the impact of interaction dynamics on the stability and regulation of the human self.


Sign in / Sign up

Export Citation Format

Share Document