scholarly journals “Can the Tower be Retained”

2014 ◽  
Vol 2 (1) ◽  
pp. 65-78
Author(s):  
Katalin Horváth

Abstract This paper focuses on the analysis of two towers of an industrial plant exhibiting extreme deflection during service loads under heavy wind conditions. The towers are 90 m and 35 m in height, respectively and are interconnected with structural steel operating platforms. The nuts have flown off at some bolted joints in the interconnecting steel structure due to high stress induced by deflections. The deflections measured at the structural steel towers had nearly twice the value permitted by the respective standard in the case of the 90 m high tower and approached the value permitted by the standard in the case of the 35 m high tower. The herein detailed complex study - covering the strength analysis of the towers, the analysis of wind effects, and the review of the foundations - has been elaborated in order to determine the causes and consequences of the experienced deflections at the plant as well as to conclude the eventual actions to be taken. The primary consideration for the conduction of the tests and analyses the determination of the eventual actions to be taken was to retain the towers and not to have them demolished.

2006 ◽  
Vol 12 (4) ◽  
pp. 269-275 ◽  
Author(s):  
Zoja Bednarek ◽  
Renata Kamocka

The behaviour of steel structure components within a high temperature field depends not only on the absolute temperature, but also on the temperature vs time function and on the heating rate, dT/dτ. The research objective is the determination of the heating rate impact on selected strength parameters of structural steels. Tests were performed under conditions of a linear temperature increase with different heating rates and with a constant stress value, σ/fy . After strength tests, the samples were subjected to metallography. Test results proved that the heating rate makes a significant impact on parameters that determine the steel structure bearing capacity at higher temperatures and that the heating rate should be accounted for in the strength analysis of steel structures exposed to high temperatures.


2018 ◽  
Vol 875 ◽  
pp. 71-76
Author(s):  
Victor Kryaskov ◽  
Andrey Vashurin ◽  
Anton Tumasov ◽  
Alexey Vasiliev

This paper is dedicated to the issues of designing of outriggers for avoidance of vehicle tilting during its stability tests. An analysis of existing types of outriggers was done by authors as well as legislative requirements on them. The reliable and well-timed operation of outriggers largely depends on the height of their positioning on a vehicle. In order to determine this important parameter a special methodic of determining the tipping angle of the vehicle with the use of computer-aided design (CAD) was composed by authors. The article also contains some main principles of strength analysis of the structure a very important part of which became the necessity of determination of coefficient of friction between the outrigger sliders and the supporting surface. This coefficient has a direct impact on the value of transverse forces appearing at the ends of outrigger beams.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 80
Author(s):  
Dmitry V. Vedernikov ◽  
Alexander N. Shanygin ◽  
Yury S. Mirgorodsky ◽  
Mikhail D. Levchenkov

This publication presents the results of complex parametrical strength investigations of typical wings for regional aircrafts obtained by means of the new version of the four-level algorithm (FLA) with the modified module responsible for the analysis of aerodynamic loading. This version of FLA, as well as a base one, is focused on significant decreasing time and labor input of a complex strength analysis of airframes by using simultaneously different principles of decomposition. The base version includes four-level decomposition of airframe and decomposition of strength tasks. The new one realizes additional decomposition of alternative variants of load cases during the process of determination of critical load cases. Such an algorithm is very suitable for strength analysis and designing airframes of regional aircrafts having a wide range of aerodynamic concepts. Results of validation of the new version of FLA for a high-aspect-ratio wing obtained in this work confirmed high performance of the algorithm in decreasing time and labor input of strength analysis of airframes at the preliminary stages of designing. During parametrical design investigation, some interesting results for strut-braced wings having high aspect ratios were obtained.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3165 ◽  
Author(s):  
Rusong Miao ◽  
Ruili Shen ◽  
Songhan Zhang ◽  
Songling Xue

Pre-stressed bolted joints are widely used in civil structures and industries. The tightening force of a bolt is crucial to the reliability of the joint connection. Loosening or over-tightening of a bolt may lead to connectors slipping or bolt strength failure, which are both harmful to the main structure. In most practical cases it is extremely difficult, even impossible, to install the bolts to ensure there is a precise tension force during the construction phase. Furthermore, it is inevitable that the bolts will loosen due to long-term usage under high stress. The identification of bolt tension is therefore of great significance for monitoring the health of existing structures. This paper reviews state-of-the-art research on bolt tightening force measurement and loosening detection, including fundamental theories, algorithms, experimental set-ups, and practical applications. In general, methods based on the acoustoelastic principle are capable of calculating the value of bolt axial stress if both the time of incident wave and reflected wave can be clearly recognized. The relevant commercial instrument has been developed and its algorithm will be briefly introduced. Methods based on contact dynamic phenomena such as wave energy attenuation, high-order harmonics, sidebands, and impedance, are able to correlate interface stiffness and the clamping force of bolted joints with respective dynamic indicators. Therefore, they are able to detect or quantify bolt tightness. The related technologies will be reviewed in detail. Potential challenges and research trends will also be discussed.


2012 ◽  
Vol 524-527 ◽  
pp. 598-603
Author(s):  
Nian Jie Ma ◽  
Zhi Qiang Zhao ◽  
Hua Zhao ◽  
Li Shuai Jiang

In order to solve the serious damage and repeat revision problem of high stress soft rock roadway in deep -950 level of Tangshan coal mine, based on the theory of the maximum stress level, together with the actual measurement of geostress and the laboratory mechanical parameters of rock-core and computer numerical simulation, the high strength combined support technology and supporting parameters are determined and the engineering test has been done. The engineering test results show that the parameter determination of high strength combined support technology, which based on the actual measurement of geostress, can effective solve the support issue of high stress soft rock roadway and provide useful experience for similar engineering problems.


2014 ◽  
Vol 670-671 ◽  
pp. 1041-1044 ◽  
Author(s):  
Xi Wang Wang ◽  
Xiao Yang Li ◽  
Lin Lin Zhang ◽  
Xiao Guang Wang

Joint member stiffness in a bolted connection directly influence the safety of a design in regard to both static and fatigue loading as well as in the prevention of separation in the connection. Thus, the accurate determination of the stiffness is of extreme importance to predict the behavior of bolted assemblies. In this paper, An analytical 3D axisymmetric model of bolted joints is proposed to obtain the joint stiffness of Bolted Joints. Considering many different analytical models have been proposed to calculate the joint stiffness, the expression based force equilibrium can be a easy way to choose the best expression for the joint stiffness as a judgment criteria.


Author(s):  
G. P. Kononenko ◽  
◽  
E. A. Piryazeva ◽  
E. V. Zotova ◽  
Sh. I. Razokov ◽  
...  

The article presents the results of complex study of cotton-seed cake from the Republic of Tajikistan, including the determination of content of mycotoxins, the analysis of exposure to microscopic fungi and the assessment of the potential of their toxin formation. The ability to produce mycotoxins was established for 11 species of micromycetes belonging to the genus Aspergillus, Penicillium, Fusarium, Scop-ulariopsis, and Trichothecium. Alternariol, zearalenone, fu-monisins, aflatoxin B1, sterigmatocystin, ochratoxin A, citrinin and emodin were found in the composition of the cotton-seed cake. Prospects for further research and the practical significance of the results are discussed.


2012 ◽  
Vol 204-208 ◽  
pp. 2736-2739
Author(s):  
Guang Qian Du ◽  
Shi Jie Wang ◽  
Yan Ting Qin ◽  
Chang Zhi Zhu

Based on the pile - anchor structure soil between piles,the unified strength theory is introdued in the strength analysis of soil arching between the piles, and parabolic soil arching computational model is uniformly distributed loads ,which are given to meet the soil between piles arch static equilibrium conditions and intensity of conditions , pile spacing formula. Compared with calculations based on the pile spacing of the Mohr-Coulomb strength criterion , the proposed method can consider the contribution of the intermediate principal stress on the strength of the soil arch , the results are more in line with the actual characters of the supporting structure .


2015 ◽  
Vol 15 (3) ◽  
pp. 33-40
Author(s):  
T. Lipiński ◽  
A. Wach ◽  
E. Detyna

Abstract The article discusses the effect of large oxide impurities (a diameter larger than 10 μm in size) on the fatigue resistance of structural steel of high purity during rotary bending. The study was performed on 7 heats produced in an industrial plant. The heats were produced in 140 ton electric furnaces. All heats were desulfurized. The experimental material consisted of semi-finished products of high-grade, carbon structural steel with: manganese, chromium, nickel, molybdenum and boron. Steel sections with a diameter of 18 mm were hardened from austenitizing by 30 minutes in temperature 880°C and tempered at a temperature of 200, 300, 400, 500 and 600°C for 120 minutes and air-cooled. The experimental variants were compared in view of the heat treatment options. Fatigue tests were performed with the use of a rotary bending machine at a frequency of 6000 cpm. The results were statistical processed and presented in graphic form. This paper discusses the results of the relative volume of large impurities, the fatigue strength for various heat processing options.


Sign in / Sign up

Export Citation Format

Share Document