scholarly journals Petrographic and Chemical Research on Furnace Wastes From Individual Heating Furnaces and Boilers – Method for Identification of Co-Burning Municipal Waste

2020 ◽  
Vol 3 (1) ◽  
pp. 110-119
Author(s):  
Wojciech Szulik ◽  
Iwona Jelonek

AbstractNumerous varieties of solid fuels have been employed for the production of heat in buildings and during cooking by utilizing furnaces and boilers. The most commonly used energy carriers include hard and brown coal, coke, and wood-based solid biofuels in the form of various types of pellets, briquettes, and chips. Notably, furnace and boiler users can combine these fuels in any way by changing their proportions. Generally, users of furnaces and boilers are known to co-burn solid fuels and various types of municipal waste. However, the municipal waste contains a number of organic compounds and toxic metals that can be released into the atmosphere during the combustion process; this poses a threat to the health of the environment and public. Herein, chemical and petrographic tests were performed to study the sources of furnace wastes. This research facilitates the identification of unacceptable substances such as plastics, metal filings, and glass.

2016 ◽  
Vol 832 ◽  
pp. 18-22 ◽  
Author(s):  
Martin Vantúch ◽  
Jozef Jandačka ◽  
Alexander Čaja

The article describes impacts of incinerating PET bottles and HDPE, LDPE bags in heat sources intended for combustion of solid fuels on emission load of environment. As primary fuel was intended brown coal and municipal waste was admixed in various amounts. The article describes the process of measuring and evaluating emissions during their incineration.


2021 ◽  
Vol 13 (8) ◽  
pp. 4405
Author(s):  
Miroslav Rimar ◽  
Olha Kulikova ◽  
Andrii Kulikov ◽  
Marcel Fedak

Waste is a product of society and one of the biggest challenges for future generations is to understand how to sustainably dispose of large amounts of waste. The main objective of this study was to determine the possibility and conditions of the decentralized combustion of non-hazardous municipal waste. The analysis of the combustion properties of a mixture of wood chips and 20–30% of municipal solid waste showed an improvement in the operating parameters of the combustion process. Analysis also confirmed that the co-combustion of dirty fuels and biomass reduced the risk of releasing minerals and heavy metals from fuel into the natural environment. Approximately 55% of the heavy metals passed into the ash. The analysis of municipal solid waste and fuel mixtures containing municipal solid waste for polycyclic aromatic hydrocarbons showed the risk of increasing polycyclic aromatic hydrocarbon concentrations in flue gases.


2021 ◽  
Vol 25 (3) ◽  
pp. 4-9
Author(s):  
V.V. Semenov ◽  
V.I. Zhdanov ◽  
I.Yu. Veretennikov ◽  
A.Yu. Hil’

The development of a mobile waste incineration plant designed for the recovery of garbage dumps located near towns and villages, from where the removal of garbage to the city to the incineration plant is not profitable due to the large remoteness of small settlements from the city. The installation has two combustion zones: in the 1st zone, the combustion process of solid municipal waste (MSW) is achieved at temperatures up to 600 °C, and in the second zone – up to 1200 °C. Afterburning of flue gas to reduce the formation of dioxins, furans and soot is provided.


2018 ◽  
Vol 247 ◽  
pp. 00032
Author(s):  
Anna Dmochowska

Depositing municipal waste in a responsible and controlled manner in landfills allows their decomposition to stabilized material. However, there are many environmental risks during operation and stabilization after landfill closure. These include: dusts, odors, potential fires associated with the presence of landfill gas and it is microbiological hazards and leachates. The latter are also generated many years after closure and reclamation of the landfill. In the event of a leak trough the anti-filtration shutter, toxic compounds found in the leachates can migrate and contaminate to groundwater. The article presents the quantitative and qualitative analysis of leachates in the final operational period of the landfill and after its closure. In both cases, the chromatographic analysis was carried out using the same conditions, i.e. solvent, extraction time, chromatograph and conditions for chromatographic analysis of samples. Physical and chemical leachate examinations were performed on the basis of valid standards. Their results show that the waste deposit is subject to increasingly advanced biodegradation processes of organic compounds. The values of such indicators as COD and BZT5 are decreasing. However, they remain quite significant, which indicates the presence of hard-to decompose and newly compounds in the leachates.


2019 ◽  
Vol 201 ◽  
pp. 06001
Author(s):  
Maciej Cholewiński ◽  
Wiesław Rybak

In this work a new lab-scale method dedicated to the evaluation of both concentration and oxidation level of mercury in flue gases from pulverised fuel fired boiler was proposed. To detect the abovementioned parameters, 2 main steps need to be evaluated. Firstly, a calorimeter bomb is utilised - by a proper implementation of mass balance of mercury within substrates and products, the quantity of oxidised mercury in gaseous products can be evaluated. Then, to simulate solid fuel fired power unit and to calculate mercury concentrations in flue gases, one of the stoichiometric mathematical models of combustion process must be applied. Early validation of the method showed considerable differences between solid fuels in mercury oxidation efficiencies and concentrations in flue gasses. Four examined fuels (lignite, hard coal and 2 types of solid biomass) was investigated. Calculated mercury concentrations in raw flue gas (>700°C) varied between 4 and 75 µg/m3ref. The lowest quantity of oxidised forms ofHg in flue gases were identified in the case of investigated lignite (27% of total Hg), while significantly higher – for selected hard coal (72%) and one type of biomass (with high chlorine concentration; up to 98%).


2020 ◽  
Vol 154 ◽  
pp. 02003
Author(s):  
Grzegorz Pełka ◽  
Wojciech Luboń ◽  
Przemysław Pachytel

In the municipal and residential sector in Poland, as many as 50% of households are heated by solid fuel boilers. Most often these are, unfortunately, inefficient boilers, fired with low-quality coal. This study characterizes the market of boilers for solid fuels in Poland, and also presents the main apportionment of these devices, due to the different criteria that characterize them. The current legal changes in the scope of energy and emission requirements for solid fuel boilers are also discussed. The main purpose of this work is to analyze the real efficiency of the solid fuel over-fired boiler used, depending on the fuel burned in it. The process of burning selected fuels (seasoned wood, coal and pea coal) in the boiler was preceded by tests of these fuels to determine their energy parameters, such as moisture, ash content, the share of volatile matter and calorific value. In the next step, the energy efficiency obtained by the tested solid fuel boiler during the combustion of selected solid fuels was compared. The highest efficiency was achieved during the combustion of pea coal, and the lowest was achieved during the combustion of wood. In any case, the nominal efficiency value was achieved. Solutions that could improve the quality of the combustion process in this type of boiler were proposed.


2016 ◽  
Vol 78 (6) ◽  
Author(s):  
Yulfi Zetra ◽  
Imam B. Sosrowidjojo ◽  
R. Y. Perry Burhan

A section of the Sangatta coalfield in the Balikpapan formation located in Kutai Basin, East Borneo, Indonesia, is the Inul area, located North of Pinang Dome. This section of the coalmine has coals with low calories (ca. 4379 cal/g), which is why they cannot be used optimally yet. The reasons of using low calorie coals are besides from being used as a mixing ingredient for the blending process of high calorie coals, they are also used to diversify the coals through the process of coal liquefaction (coal to liquid). In order for the coal liquefaction to be processed correctly, there needs to be a study on the geochemistry organics through coal biomarker analysis, particularly on the hydrocarbon aromatic fractions, so that the origins of the coal organic compounds could be known. Biomarker analysis on the aromatic hydrocarbon fraction shows the existence of naphthalene compound groups with sesquiterpenoids skeleton, phenanthrene with diterpenoids, sesterpenoids skeleton and triterpenoids aromatic pentacyclic. The existence of cadalene compound, triterpene pentacyclic monoaromatic, -triaromatic, -tetraaromatic, -pentaaromatic and triterpenoid C-ring cleaved hydrocarbon with oleanane, ursane and lupane skeletons indicated that the source of coal organic compounds were derived from b-amyrin which were produced by Angiospermae plants. The coal biomarkers distribution, particularly the high abundance of triterpenoid pentacyclic triaromatic compound, confirmed the low maturity of the coals which is predicted to profit from the process of liquefaction due to the high contents of their aromatic fractions.


Sign in / Sign up

Export Citation Format

Share Document