scholarly journals Surface-Modified Bacterial Cellulose with Mercaptosilane as a Multifunctional Platform

Author(s):  
Nayara C. Do Amaral ◽  
Amanda M. Claro ◽  
Gustavo C. Monteiro ◽  
Hernane S. Barud

Cellulose synthesized by bacteria has unique properties such as high water retention capacity, biocompatibility, biodegradability and flexibility. Nevertheless, modification of this biomaterial is required in order to obtain multifunctional materials, which may be applied in several high-value added products, as catalytic and cell culture platforms. The surface of bacterial cellulose (BC) can be modified by several approaches, namely: (i) physical treatment by plasma, (ii) adsorption of molecules onto BC surface, and (iii) chemical modification. In this sense, the aim of this study was to modify the BC surface by silanization reaction at room temperature using a mixture of ethanol and water, using two different protocols. Thus, BC membranes synthesized by Komagataeibacter xylinus were modified by adding the thiol (SH) functional group with (3-mercaptopropyl)trimethoxysilane under mild conditions. The produced materials were analyzed by elemental analysis, ATR-FTIR, TGA and SEM, and the successful modification was proven by elemental analysis and SEM. 

2021 ◽  
Vol 55 (3-4) ◽  
pp. 243-254
Author(s):  
BURAK TOP ◽  
ERDAL UGUZDOGAN ◽  
NAZIME MERCAN DOGAN ◽  
SEVKI ARSLAN ◽  
NAIME NUR BOZBEYOGLU ◽  
...  

"In this research, bacterial cellulose (BC) was produced from Komagataeibacter xylinus S4 isolated from home-made wine vinegar (Denizli-Çal) and characterized through morphological and biochemical analyses. K. xylinus was identified by 16S rDNA sequence analysis. The wet (51.8-52.8 g) and dry (0.43-0.735 g) weights of the produced BC were measured. The morphology of cellulose pellicles was examined by scanning electron microscopy (SEM) and a dense nanofiber network was observed. TGA analysis showed that the weight loss in the dehydration step in the BC samples occurred between 50 °C and 150 °C, while the decomposition step took place between 215 °C and 228 °C. Also, the cytotoxic effect, moisture content, water retention capacity and swelling behavior of BC were evaluated. In vitro assays demonstrated that BC had no significant cytotoxic effect. It was found that BC had antibacterial and antibiofilm potential (antibacterial effect>antibiofilm effect). All the results clearly showed that the produced BC can be considered as a safe material for different purposes, such as wound dressings."


Author(s):  
Khursheed Ahmad Wani ◽  
Azad Gull ◽  
Ashaq Ahmad Dar ◽  
Shubeena Nazir

The conversion of waste into vermicompost is seen as an opportunity by different workers that may be advantageous in terms of improving the structure and physical conditions of the soil, increase the water retention capacity and availability of phosphorous to the growing plants, prevention of leaching loss of soluble inorganic nitrogen, and addition of nutrients/essential micro nutrients. It is observed that the vermicompost obtained from seri waste has better nutrient value as compared to conventional fertilizers. The success of sericulture industry in future will depend on sustainability of organic fertilizers both in terms of nutrient management and environmental protection. Similarly, the waste can be used for biogas production, as activated carbon, feed for the livestock, etc. are the opportunities of converting waste into value-added products. This chapter will review the different types of waste that is produced from sericulture and can be used to form value-added services.


2021 ◽  
Author(s):  
Eyup Bilgi ◽  
Evren Homan Gokce ◽  
ECE BAYIR ◽  
Aylin Sendemir ◽  
Kevser Ozgen Ozer ◽  
...  

Abstract Bacterial cellulose (BC) produced by certain bacteria has the potential to be used in many different areas. Despite its advantageous properties such as high purity, mechanical strength, nanofiber mesh structure, and high-water holding capacity, its production through a biotechnological process prevents it from competing with vegetable cellulose in terms of cost-effectiveness. Therefore, studies associated with BC can be divided in two categories which are development cost effective BC production methods and culture media, and production of high value-added products from BC. In this study, it was aimed to develop a taurine-loaded moisturizing facial mask with antioxidant properties based on BC's high-water retention and chemical retention capacity. BC facial mask samples were characterized by Scanning Electron Microscopy (SEM) imaging, Fourier Transform Infrared (FTIR), Differential Scanning Calorimetry (DSC), Liquid Chromatography–Mass spectrometry (LC-MS), microbial, and mechanical stability tests. According to our results, produced facial mask samples do not show any cytotoxic effect on neither human keratinocyte (HS2) nor mouse fibroblast (L-929) cell lines, it has high thermal stability which making it suitable for different sterilization techniques including sterilization by heat treatment. Taurine release (over 2µg/ml in 5 min) and microbial stability tests (no bacterial growth observed) of packaged products kept at 40 and 25 °C for 6 months have shown that the product preserves its characteristics for a long time. In conclusion “bacterial cellulose-based facial masks" are suitable for use as a facial mask, and they can be used for moisturizing and antioxidant properties by means of taurine.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rekha A. ◽  
Vidhya A.

Recent research suggests that biochar is a promising approach to minimize soil contamination caused by heavy metals and organic pollutants. It is also involved in the amendment of soil by altering the nutrients, pH and other factors. Through intensive literature review, this paper was aimed to better understand the selection of feedstock processes, preparation, and characterization of biochar. Wide variety of feedstock used for the biochar production based on the cost effectiveness, ease availability and they are ecofriendly to the environment. Among the thermochemical processes, pyrolysis is the promising techniques followed for the production of BC. The stabilization efficacy was mainly determined by cation exchange capacity, pH, and ash content of the biochar. The physicochemical characteristic of the biochar is analyzed using various methods such as SEM, FTIR, TGA and BET analysis. The surface area plays a major role in the metal sorption. The quality characteristics of biochar as a soil amendment varied greatly with the feedstock materials and the pyrolysis conditions. Biochar plays a great role in increasing the pH which helps the acidic soil region and its high-water retention capacity enhance the moisture level in the soil which enhances the microbial communities and its activity. Biochar becomes stabilized in the soil by interacting with soil particles. The inherent characteristics of the biochar as dictated by feedstock and pyrolysis conditions, interact with climatic conditions such as precipitation and temperature to influence how long biochar carbon remains stored in the soil. Due to its carbon sequestration in the soil, it helps in increasing the fertility of the soil and also enhances the crop yield.


Author(s):  
Anthony S. R. Juo ◽  
Kathrin Franzluebbers

Allophanic soils are dark-colored young soils derived mainly from volcanic ash. These soils typically have a low bulk density (< 0.9 Mg/m3), a high water retention capacity (100% by weight at field capacity), and contain predominantly allophanes, imogolite, halloysite, and amorphous Al silicates in the clay fraction. These soils are found in small, restricted areas with volcanic activity. Worldwide, there are about 120 million ha of allophanic soils, which is about 1% of the Earth's ice-free land surface. In tropical regions, allophanic soils are among the most productive and intensively used agricultural soils. They occur in the Philippines, Indonesia, Papua New Guinea, the Caribbean and South Pacific islands, East Africa, Central America, and the Andean rim of South America. Allophanic soils are primarily Andisols and andic Inceptisols, Entisols, Mollisols, and Alfisols according to the Soil Taxonomy classification. Allophanic soils generally have a dark-colored surface soil, slippery or greasy consistency, a predominantly crumb and granular structure, and a low bulk density ranging from 0.3 to 0.8 Mg/m3. Although allophanic soils are apparently well-drained, they still have a very high water content many days after rain. When the soil is pressed between fingers, it gives a plastic, greasy, but non-sticky sensation of a silty or loamy texture. When dry, the soil loses its greasiness and becomes friable and powdery. The low bulk density of allophanic soils is closely related to the high soil porosity. For example, moderately weathered allophanic soils typically have a total porosity of 78%, with macro-, meso-, and micropores occupying 13%, 33%, and 32%, respectively. Water retained in the mesopores is readily available for plant uptake. Water retained in the micropores is held strongly by soil particles and is not readily available for plant use. The macropores provide soil aeration and facilitate water infiltration. The high water retention capacity is also associated with the high soil porosity. In allophanic soils formed under a humid climate, especially those containing large amounts of allophane, the moisture content at field capacity can be as high as 300%, calculated on a weight basis. Such extremely high values of water content seem misleading.


2019 ◽  
Vol 20 (3) ◽  
pp. 1793-1805
Author(s):  
Julia Gebert ◽  
Alexander Groengroeft

Abstract Purpose Climate change necessitates heightening and strengthening of dikes, requiring large volumes of suitable soil. This study investigated soil ripening and long-term development of hydraulic behaviour of a dike constructed from slightly contaminated, partially dewatered dredged material from the Port of Hamburg under realistic conditions of construction and operation. Materials and methods Two test fields of 126 m2 each were constructed in 2004 for long-term analysis of hydraulic behaviour in combination with the possible mobilisation of contaminants. In test field 1 (MS), the 1-m-thick cover above the sand core consisted of traditionally used alluvial marsh sediment (reference), while in test field 2, the lower 0.7 m of the cover was substituted with dredged material (DM + MS). An HDPE tray below each field served the collection of bottom fluxes and hence the quantification of discharges and analysis of their chemical composition. In 2012, an excavation was carried out to inspect the development of the soil structure. Results and discussion The discharge pattern revealed three distinct phases related to the post-construction structure development and therefore physical ripening of the soils. Within a single year, bottom fluxes typically started in mid-winter and ended in late spring. The dike cover containing DM had a high water retention capacity; however, the vertically continuous primary shrinkage cracks led to higher total bottom fluxes compared to the dike constructed from MS only. System hydraulic conductivities increased by up to six orders of magnitude compared to the as-built condition before soil ripening and structuring. The dredged material maintained a reduced geochemical status for about two years after construction. After first shrinkage and intrusion of oxygen, the material changed to an oxidised state, earmarking the onset of the chemical ripening process. Oxidising conditions were sustained in the long term, seen from the absence of previously elevated ammonium concentrations in the dike seepage. Conclusions System hydraulics of the test field with dredged material were mainly determined by the covering layer of marsh sediment. After construction, the dredged material underwent physical, chemical and biological soil ripening processes, coupled to a respective change in discharge patterns, which, however, did not impair dike stability. It is recommended that soil ripening processes are induced and completed as part of the material’s pre-treatment, precluding the formation of irreversible shrinkage cracks and changeover of redox conditions after construction. The findings contribute to assessing the feasibility of the beneficial use of dredged material.


2021 ◽  
Author(s):  
Eduardo Cejudo ◽  
Daniela Ortega-Camacho ◽  
Eduardo Arturo García-Vargas ◽  
Elizabeth Hernández-Alarcón

Abstract Karstic wetlands provide important ecosystem services such as maintenance of hydrological balance, flood regulation, drinking water supply and nutrients cycling. It is important to conserve and maintain karstic wetlands due to its interaction with groundwater systems and its socioeconomic relevance. The objective of this research was to generate base-line knowledge of the microtopography, hydroperiod and biogeochemical characteristics of poorly known tropical karstic marshes by testing two hypotheses, the phreatotrophic nature of tropical karstic marshes, and the alteration of its biogeochemistry by a highway dividing the marsh. The study site is located in the north of the state of Quintana Roo (Mexico), in pseudo-paludal depressions associated to fractures. The water level varied from few centimeters below the ground to more than 100 cm. We demonstrate that the wetland is groundwater-fed with differences among groundwater, interstitial and surface water in almost all parameters measured. The water is calcium bicarbonate type; the main processes occurring are recharge, evaporation and rock dissolution. Our results suggests active denitrification, low phosphates attributed to Ca- and Fe/Al-bound P, elevated alkalinity and sulfate reduction due to anaerobic conditions in water and soil. The soil reflect its sedimentary origin, the bulk density is low with very high water retention capacity. We do not have enough evidence of the highway modifying the biogeochemistry or hydrology of the marsh. These karstic wetlands provide important provisioning and supporting ecosystem services that should be studied, acknowledged and maintained.


2022 ◽  
Vol 34 (2) ◽  
pp. 453-458
Author(s):  
Lakhvinder Kaur ◽  
Shachi Shah

Fruits and vegetables have the highest wastage rates of 45% of any food. One of the recent research areas is food waste valorization as a potential alternative to the disposal of a wide range of organic waste using microorganisms as one of the strategies known as microbial valorization. Bacterial cellulose is best known microbial valorization product because of its low cost, environmentally friendly nature, renewability, nanoscale dimensions, biocompatibility and extremely high hydrophilicity. Therefore, present study focuses on the isolation, characterization and identification of cellulose producing bacteria from decaying apple waste. Cellulose producers were isolated from decaying apple waste. The bacterial isolates obtained were identified through the morphological biochemical, physiological and molecular identification. The bacterial isolates exhibited potential remediation options to biovalorize decaying fruit waste by producing value added products as well as in safe disposal of waste.


2021 ◽  
Vol 25 (2) ◽  
pp. 90-98
Author(s):  
E.T. Tyurin ◽  
◽  
A.A. Zuikov ◽  
A.I. Bondarev ◽  
L.P. Gulyanz ◽  
...  

The influence of nanofibrillar cellulose samples on the coating compositions water retention is considered. It was shown that gels of nanofibrillar cellulose and coating compositions based on them are distinguished by a high water-retention capacity during centrifugation (50.8% and 31.0% versus 17.7% with NaCMC). A preliminary assessment of the printing and technical properties of light weight coated paper (LWC) using nanofibrillar cellulose in the coating composition has been carried out. The technical characteristics of nanofibrillar cellulose have been determined, formulations of lightweight paper coatings have been developed for high-speed modern equipment.


2019 ◽  
Vol 32 (1) ◽  
pp. 1-8
Author(s):  
N. Sharma ◽  
T. Sinderpal

Physico-chemical properties are crucial characteristics of hydrocolloids as they decide the applicability of them. Rheology of system, flow behaviour and mechanical properties make hydrocolloids suitable for food industry. Modification of consistency or texture properties of functional polymers also controls their sensory characteristics, thereby they become significant essences such as thickener, gelling agents, foaming agent, texture modifier, viscosifier, emulsifier, stabilizer and binder. Industrial and pharmaceutical applications are also controlled by some suitable physico-chemical properties of hydrocolloids. The polysaccharide gum exudates constitute a architecturally distinct class of complex biomacromolecules having unique physico-chemical properties. Due to their good bio/tissue compatibility, non-toxicity, they are extensively used in the field of tissue engineering, drug delivery and wound healing. Chemical and molecular architecture of hydrocolloids in turn controls their physico-chemical and functional properties. Sterculia gum is a substituted rhamnogalacturonoglycan (pectic) type exudate gum used as suspending agent, gelling agents, emulsifier, bulk laxative, dental adhesive, drug delivery agent and wound healing agent. It exhibits high water retention capacity, high viscosity and least solubility. Solutions of sterculia gum are viscoelastic and thixotropic. Sterculia gum has been recommended as effective wound dressing material as it can form a intensely adhesive gel when dispersed in minimum ammount of water. Owing to wide applications and distinctive properties of sterculia gum, present work is an endeavor to summarize the molecular organization, chemical configuration and physico-chemical properties of sterculia gum and the factors affecting physico-chemical properties of sterculia gum.


Sign in / Sign up

Export Citation Format

Share Document