scholarly journals Kinetic Studies of Heavy Metal Removal from Industrial Wastewater by Using Natural Zeolite

2021 ◽  
Vol 5 (1) ◽  
pp. 18-25
Author(s):  
Ali Mohammed Salih ◽  
Craig Williams ◽  
Polla Khanaqa

The present work involves the study of the removal of Cu2+, Fe3+, Pb2+ and Zn2+ from synthetic metal solutions using natural zeolite. Laboratory experiments were used to investigate the efficiency of adsorbents in the uptake of heavy metals from industrial wastewater. The kinetic study was used to identify the effect of parameters that affect the rate of adsorption and evaluated their impact on the efficiency of the zeolite in the removal of heavy metals from industrial wastewater. Natural zeolite (clinoptilolite) as adsorbent contacted with multi-component synthetic solutions containing Cu2+, Fe3+, Pb2+ and Zn2+ ions without any pre-modifications and every hour 15 ml of the samples were filtered and taken for metal ion concentration analysis using the ICP-OES. The pH values were monitored and adjusted regularly. The results showed that the capacity of the adsorbents for the removal of heavy metals increased with a greater mass of absorbent, increased initial solution pH, increased agitation speed and higher solution concentration.

2004 ◽  
Vol 1 (3) ◽  
pp. 180 ◽  
Author(s):  
Manuel Esteban Sastre de Vicente ◽  
Roberto Herrero ◽  
Pablo Lodeiro ◽  
Bruno Cordero

Environmental Context. Conventional processes for the removal of heavy metals from wastewaters generally involves chemical precipitation of metals (changing the pH) followed by a period to allow the metal precipitates to settle and be separated. These processes are inefficient when the metals are at a low concentration and still demand handling and disposal of toxic metal sludges. An alternative method for heavy metal removal is adsorption onto a biological material, biosorption. The biological materials, including agricultural byproducts, bacteria, fungi, yeast, and algae, all which take up heavy metals in substantial quantities, are relatively inexpensive, widely available, and from renewable sources. However, biological materials are complex and the active mechanisms often unclear. Abstract. Cadmium biosorption properties of nonliving, dried brown marine macroalga Fucus spiralis from Galician coast (northwest Spain) have been investigated. The biosorption capacity of the alga strongly depends on solution pH; the uptake is almost negligible at pH ≤ 2 and reaches a plateau at around pH 4.0. Cadmium biosorption kinetics by F. spiralis is relatively fast, with 90% of total adsorption taking place in less than one hour. A pseudo second order mechanism has been proved to be able to predict the kinetic behaviour of the biosorption process. The effect of initial cadmium ion concentration, alga dose, solution pH, and temperature on the biosorption kinetics has been studied. The Langmuir, Freundlich, Langmuir–Freundlich, and Tóth isotherms were used to fit the experimental data and to find out the adsorption parameters. Acid–base properties of the alga have been studied potentiometrically in order to calculate the number of acidic groups and the apparent pK value by using Katchalsky model. The pK obtained is comparable with typical values associated to the ionization of carboxyl groups of alginates, supporting the implication of these groups in the biosorption process.


2016 ◽  
Vol 73 (12) ◽  
pp. 2921-2928 ◽  
Author(s):  
Marla C. Maniquiz-Redillas ◽  
Lee-Hyung Kim

Abstract In this research, an infiltration trench equipped with an extensive pretreatment and filter bed consisting of woodchip, sand and gravel was utilized as a low impact development technique to manage stormwater runoff from a highly impervious road with particular emphasis on heavy metal removal. Findings revealed that the major factors influencing the removal of heavy metals were the concentration of the particulate matters and heavy metals in runoff, runoff volume and flow rates. The reduction of heavy metals was enhanced by sedimentation of particulates through pretreatment. Fine particles (<2 mm) had the most significant amount of heavy metals, thus, enhanced adsorption and filtration using various filter media were important design considerations. Sediment was most highly attached on the surface area of woodchip than to other filter media like sand, gravel and geotextile. It is suggested that maintenance must be performed after the end of the winter season wherein high sediment rate was observed to maintain the efficiency of the treatment system.


2013 ◽  
Vol 779-780 ◽  
pp. 1674-1677 ◽  
Author(s):  
Dan Lian Huang ◽  
Guang Ming Zeng ◽  
Piao Xu ◽  
Cui Lai ◽  
Mei Hua Zhao ◽  
...  

Immobilized microbe technologies are expected to be effectively used in wastewater treatment. Removal of heavy-metals from wastewater by immobilized Phanerochaete chrysosporium (Pc) with Ca-alginate and iron oxide magnetic nanoparticles (MNPs) was studied. The results showed that a biosorbent as Pc immobilized by Ca-alginate and iron oxide magnetic nanoparticles was successfully developed. And the iron oxide magnetic nanoparticles played an important role in the increase of biosorption capacity of Pc. Energy dispersive spectrometer (EDS) analysis confirmed that metal ions adsorbed to the surface of the biosorbents were partly transmitted to the interior of biosorbents, mainly embedded with iron oxide nanoparticles and Ca-alginate. Moreover, it was found that MNPs-Ca-alginate immobilized Pc showed a good affinity to various heavy metals, such as Pb(II), Zn(II), Cd(II) or Mg(II) and so on. The results proved the high efficiency of the biosorbents for heavy-metal removal and its potential application in the treatment of metal-containing wastewater.


2001 ◽  
Vol 44 (10) ◽  
pp. 53-58 ◽  
Author(s):  
L. C. Aralp ◽  
A. Erdincler ◽  
T. T. Onay

Heavy metal concentration in sludge is one of the major obstacles for the application of sludge on land. There are various methods for the removal of heavy metals in sludge. Using sulfur oxidizing bacteria for microbiological removal of heavy metals from sludges is an outstanding option because of high metal solubilization rates and the low cost. In this study, bioleaching by indigenous sulfur oxidizing bacteria was applied to sludges generated from the co-treatment of municipal wastewater and leachate for the removal of selected heavy metals. Sulfur oxidizing bacteria were acclimated to activated sludge. The effect of the high organic content of leachate on the bioleaching process was investigated in four sets of sludges having different concentrations of leachate. Sludges in Sets A, B, C and D were obtained from co-treatment of wastewater and 3%, 5%, 7% and 10% (v/v) leachate respectively. The highest Cr, Ni and Fe solubilization was obtained from Set A. Sulfur oxidizing bacteria were totally inhibited in Set D that received the highest volume of leachate.


1986 ◽  
Vol 18 (1) ◽  
pp. 19-29 ◽  
Author(s):  
I. Licskó ◽  
I. Takács

It has been established in laboratory model experiments that the removal of dissolved heavyimetals from wastewaters is rendered more difficult in the presence of colloid-stabilizing agents. This unfavourable effect can be eliminated by the addition of Mg2+ ions and the adjustment to a fairly high pH. By increasing the concentration of Mg2+ ions, the pH necessary for destroying the stability of colloidal dispersion can be lowered. These findings also apply to the combined removal of different heavy metals (Cu, Zn, Cr(III), Ni, Cd). In alkaline conditions, in the presence of ammonium salts, some heavy metals (Cu, Zn, Ni) form high stability amine complexes. A higher pH is necessary for the breakdown of these complexes and the satisfactory removal of heavy metals.


2016 ◽  
Vol 7 (4) ◽  
pp. 387-419 ◽  
Author(s):  
Renu ◽  
Madhu Agarwal ◽  
K. Singh

Heavy metals are discharged into water from various industries. They can be toxic or carcinogenic in nature and can cause severe problems for humans and aquatic ecosystems. Thus, the removal of heavy metals from wastewater is a serious problem. The adsorption process is widely used for the removal of heavy metals from wastewater because of its low cost, availability and eco-friendly nature. Both commercial adsorbents and bioadsorbents are used for the removal of heavy metals from wastewater, with high removal capacity. This review article aims to compile scattered information on the different adsorbents that are used for heavy metal removal and to provide information on the commercially available and natural bioadsorbents used for removal of chromium, cadmium and copper, in particular.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 37
Author(s):  
Nurul Shuhada Mohd Makhtar ◽  
Juferi Idris ◽  
Mohibah Musa ◽  
Yoshito Andou ◽  
Ku Halim Ku Hamid ◽  
...  

High removal of heavy metals using plant-based bioflocculant under low concentration is required due to its low cost, abundant source, and nontoxicity for improved wastewater management and utilization in the water industry. This paper presents a treatment of synthetic wastewater using plant-based Tacca leontopetaloides biopolymer flocculant (TBPF) without modification on its structural polymer chains. It produced a high removal of heavy metals (Zn, Pb, Ni, and Cd) at a low concentration of TBPF dosage. In our previous report, TBPF was characterized and successfully reduced the turbidity, total suspended solids, and color for leachate treatment; however, its effectiveness for heavy metal removal has not been reported. The removal of these heavy metals was performed using a standard jar test procedure at different pH values of synthetic wastewater and TBPF dosages. The effects of hydroxide ion, pH, initial TBPF concentration, initial metal ion concentration, and TBPF dosage were examined using one factorial at the time (OFAT). The results show that the highest removal for Zn, Pb, Ni, and Cd metal ions were 98.4–98.5%, 79–80%, 97–98%, and 92–93%, respectively, using 120 mg/L dosage from the initial concentration of 10% TBPF at pH 10. The final concentrations for Zn, Pb, Ni, and Cd metal ions were 0.043–0.044, 0.41–0.43, 0.037–0.054, and 0.11–0.13 mg/L, respectively, which are below the Standard B discharge limit set by the Department of Environment (DOE), Malaysia. The results show that TBPF has a high potential for the removal of heavy metals, particularly Zn, Pb, Ni, and Cd, in real wastewater treatment.


2021 ◽  
Author(s):  
Athar Hussain ◽  
Sangeeta Madan ◽  
Richa Madan

Adsorption processes are extensively used in wastewater treatment for heavy metal removal. The most widely used adsorbent is activated carbon giving the best of results but it’s high cost limits its use. It has a high cost of production and regeneration. As the world today faces a shortage of freshwater resources, it is inevitable to look for alternatives that lessen the burden on existing resources. Also, heavy metals are toxic even in trace concentrations, so an environmentally safe method of their removal necessitated the requirement of low cost adsorbents. Adsorption is a cost-effective technique and gained recognition due to its minimum waste disposal advantage. This chapter focuses on the process of adsorption and the types of adsorbent available today. It also encompasses the low-cost adsorbents ranging from agricultural waste to industrial waste explaining the adsorption reaction condition. The cost-effectiveness, technical applicability and easy availability of raw material with low negative impact on the system are the precursors in selecting the adsorbents. The novelty of the chapter lies in covering a wide range of adsorbents with their efficiency in removal of heavy metals from wastewater.


2020 ◽  
Vol 32 (4) ◽  
pp. 876-880
Author(s):  
Maninder Singh ◽  
D. P. Tiwari ◽  
Mamta Bhagat

The indiscriminate discharge of heavy metals into water and soil from anthropogenic practices is becoming prominent threat to the environment. Heavy metals like chromium, cadmium, lead, arsenic, nickel etc. are heavily toxic and carcinogenic in nature. This study emphasizes the adequacy of activated water chest nut (Trapa natans) peel powder as a new adsorbent material for removal of chromium(VI) metal ions. Adsorption experiments were performed in batch process. Various process parameters like contact time, temperature, solution pH, dose of adsorbent, metal ion concentration etc. were optimized. The physico-chemical properties of adsorbent material were characterized by FTIR and XRD. The morphology, topology of adsorbent surface was characterized by scanning electron microscopy (SEM) and Brunauer, Emmett and Teller (BET) which revealed a highly porous structure and available specific surface area. The adsorption capacity (maximum) was counted as 59.17 mg/g and specific surface area was found 23.467 m2/g at a pH 7. The adsorption process for Cr(VI) ions was in a good agreement with Langmuir isotherm. The process also followed pseudo second order kinetics. The obtained result shows that activated water chest nut (Trapa natans) peel powder (AWCPP) can be a hopeful low-cost and eco-friendly bio-adsorbent for removal of Cr(VI) metal ions and also better adsorbent than other various reported adsorbents.


RSC Advances ◽  
2015 ◽  
Vol 5 (38) ◽  
pp. 29885-29907 ◽  
Author(s):  
Phoebe Zito Ray ◽  
Heather J. Shipley

Schematic of inorganic adsorbents (INA) for heavy metal removal.


Sign in / Sign up

Export Citation Format

Share Document