The effect of Silver Nanoparticle Induced Diabetic on Wound Healing Full Thickness Pseudomonas aeruginosa Contaminated Mouse Skin Wound Models

2019 ◽  
Vol 10 (04) ◽  
pp. 720-724
Author(s):  
Thamer Mutlag Jasim ◽  
Abas Adel Latif

This research was considered to evaluate the antidiabetic effect of silver nanoparticle (AgNps)and following experimental diabetic. In the present study. Thirty healthy swiss mice aged between 7-8 weeks, old male mice and divided into six groups of five animals. Diabetic induced mice by using intraperitoneal (IP) injection of alloxan (180 mg lkg). Group 1 included non diabetic control, Group 2 Diabetic, Group 3 Diabetic +0.01 mg AgNps Group 4 Diabetic +0.05 AgNps, Group 5 Diabetic+ wound contaminated with Pseudomonas aeruginosa. Group 6 ( diabetic +contaminated wound + silver nanoparticle (Ag Nps). Silver nanoparticle show ample antibacterial activities. The result of the current study introduced an invivo silvernanoparticle accelerate by effects on the treatment of Pseudomonas aeruginosa infected skin wound. The present study was conducted to synthesis the AgNps biologically and evaluate its antibacterial activity against Pseudomonas aeruginosa diabetes induced by Alloxan in mice. Adminstration of silver nanoparticle resulted in significance antidiabetic effects that is is improved glucose tolerance higher source. The current study results are presented for the first time which suggest for the development of AgNps as anantdiabetic factor in future. The broad spectrum of bioactivity of AgNPs makes them promising agent not only to fight infection, but to sterile the wound and accelerate wound healing. There were significant higher wound healing scores in Nanoparticle treated group. Compared with control group. These result suggest that nanoparticle may be useful in diabetic wound healing. Treatment with asingle dose of AGNPs produced amild reduction in blood glucose and some reduction in plasma insulin at 2 h.The present results revealed the potential of the synthesized Ag-NPs as safer bactericidal agents for the treatment of diabetes induced wound contaminated with P.aeruginosa.

2021 ◽  
pp. 1290-1298
Author(s):  
Ali Ghazi Atiyah ◽  
Nadia Hameed Rija AL-Falahi

Background and Aim: Recently, many medicinal plants have received considerable attention in the medical field because of their role in the wound healing potential. This study aimed to determine the effectiveness of H. tuberosus powder on the healing pathway of full-thickness cutaneous wounds in a mouse model. Materials and Methods: H. tuberosus powder was prepared by a freeze-drying process using a lyophilizer and its active ingredients were evaluated by high-performance liquid chromatography (HPLC), while its antibacterial properties were evaluated by agar well diffusion assay. The percentage wound contraction was also assessed. Thirty mice were used, which were divided equally into two groups, a control group and a treated group. A full-thickness wound, 1 cm×1 cm in size, was established on the dorsal aspect of the thoracolumbar region, into which H. tuberosus powder was topically applied in the treated group. In contrast, the control group was left without any treatment. The animals were euthanized on days 7, 14, and 21 after wounding for histopathological study. Results: The agar well diffusion method indicated the antibacterial activity of H. tuberosus, while the HPLC results indicated that the active ingredients of H. tuberosus powder mainly consisted of three major kinds of fatty acid. In addition, the macroscopic results of wound contraction rate and the histopathological outcomes of the healing process were significantly (p≤0.05) enhanced in the treated group compared with those in the control group. Conclusion: H. tuberosus powder acts as an antibacterial agent with the ability to enhance the wound healing process.


2021 ◽  
Author(s):  
Shune Xiao ◽  
Chunfang Xiao ◽  
Yong Miao ◽  
Jin Wang ◽  
Ruosi Chen ◽  
...  

Abstract Background: Diabetic wounds threaten the health and quality of life of patients and their treatment remains challenging. ADSC-derived exosomes have shown encouraging results in enhancing diabetic wound healing. However, the common method of exosome administration is subcutaneous injection at several sites around the wound, causing further damage and preventing direct contact between the exosomes and the injury site. Methods: A diabetic mouse skin wound model was established. ADSC-derived exosomes (ADSC-Exos) were isolated and in vitro application of exosomes was evaluated using human umbilical vein endothelial cells (HUVECs) and human dermal fibroblasts (HDFs). After preparation and characterization of a scaffold of human acellular amniotic membrane (hAAM) loaded with ADSC-Exos in vitro , they were transplanted into wounds in vivo and wound healing phenomena were observed by histological and immunohistochemical analyses to identify the wound healing mechanism of the exosome-hAAM composites. Results: The hAAM scaffold dressing was very suitable for the delivery of exosomes. ADSC-Exos enhanced the proliferation and migration of HDFs and promoted proliferation and tube formation of HUVECs in vitro . In vivo results from a diabetic skin wound model showed that the hAAM-Exos dressing accelerated wound healing by regulating inflammation, stimulating vascularization and promoting the production of extracellular matrix. Conclusion: Exosome-incorporated hAAM scaffolds showed great potential in promoting diabetic skin wound healing, while also providing strong evidence for the future clinical applications of ADSC-derived exosomes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xu Yang ◽  
Anwarul Haque ◽  
Shigenobu Matsuzaki ◽  
Tetsuya Matsumoto ◽  
Shigeki Nakamura

The emergence of multi-drug resistant Pseudomonas aeruginosa necessitates the search for treatment options other than antibiotic use. The use of bacteriophages is currently being considered as an alternative to antibiotics for the treatment of bacterial infections. A number of bacteriophages were introduced to treat pneumonia in past reports. However, there are still lack of knowledge regarding the dosages, application time, mechanism and safety of phage therapy against P. aeruginosa pneumonia. We used the bacteriophage KPP10 against P. aeruginosa strain D4-induced pneumonia mouse models and observed their outcomes in comparison to control models. We found that the nasal inhalation of highly concentrated KPP10 (MOI = 80) significantly improved survival rate in pneumonia models (P < 0.01). The number of viable bacteria in both lungs and in serum were significantly decreased (P < 0.01) in phage-treated mice in comparison to the control mice. Pathological examination showed that phage-treated group had significantly reduced bleeding, inflammatory cell infiltration, and mucus secretion in lung interstitium. We also measured inflammatory cytokine levels in the serum and lung homogenates of mice. In phage-treated models, serum TNFα, IL-1β, and IFN-γ levels were significantly lower (P < 0.05, P < 0.01, and P < 0.05, respectively) than those in the control models. In the lung homogenate, the mean IL-1β level in phage-treated models was significantly lower (P < 0.05) than that of the control group. We confirmed the presence of phage in blood and lungs, and evaluated the safety of bacteriophage use in living models since bacteriophage mediated bacterial lysis arise concern of endotoxic shock. The study results suggest that phage therapy can potentially be used in treating lung infections caused by Pseudomonas aeruginosa.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shune Xiao ◽  
Chunfang Xiao ◽  
Yong Miao ◽  
Jin Wang ◽  
Ruosi Chen ◽  
...  

Abstract Background Diabetic wounds threaten the health and quality of life of patients and their treatment remains challenging. ADSC-derived exosomes have shown encouraging results in enhancing diabetic wound healing. However, how to use exosomes in wound treatment effectively is a problem that needs to be addressed at present. Methods A diabetic mouse skin wound model was established. ADSC-derived exosomes (ADSC-Exos) were isolated, and in vitro application of exosomes was evaluated using human umbilical vein endothelial cells (HUVECs) and human dermal fibroblasts (HDFs). After preparation and characterization of a scaffold of human acellular amniotic membrane (hAAM) loaded with ADSC-Exos in vitro, they were transplanted into wounds in vivo and wound healing phenomena were observed by histological and immunohistochemical analyses to identify the wound healing mechanism of the exosome-hAAM composites. Results The hAAM scaffold dressing was very suitable for the delivery of exosomes. ADSC-Exos enhanced the proliferation and migration of HDFs and promoted proliferation and tube formation of HUVECs in vitro. In vivo results from a diabetic skin wound model showed that the hAAM-Exos dressing accelerated wound healing by regulating inflammation, stimulating vascularization, and promoting the production of extracellular matrix. Conclusion Exosome-incorporated hAAM scaffolds showed great potential in promoting diabetic skin wound healing, while also providing strong evidence for the future clinical applications of ADSC-derived exosomes.


Author(s):  
Pallavi Singh Chauhan ◽  
Vikas Shrivastava ◽  
Prasad Gbks ◽  
Rajesh Singh Tomar

 Objective: Green synthesis of nanoparticles has been used as an alternative, efficient, less expensive, and ecofriendly method. Ancient approaches employed for nanoparticle fabrication were chemical and physical methods having various disadvantages as they are costly and potentially harmful to the environment, use of harsh chemicals and stringent protocol for synthesizing nanoparticles. The present study is focused on the synthesis of silver nanoparticles by bio-availed as well as chemical route and evaluation of their wound healing potential in Wistar rat model.Methods: Extraction of Syzygium cumini was done and was used for silver nanoparticle synthesis. The synthesized nanoparticles were characterized by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy, which confirms the availability of nanosilver particles with marginally spherical morphology. The particles were then carried forward for treating impaired diabetic wounds in Wistar rat models. Regular photography was done and wound healing parameters were monitored throughout the study along with analyzing other parameters such as biochemical, hematological, and histological parameters.Results: The study showed that the sizes of the synthesized nanoparticles are below 100 nm. The results obtained from in vivo studies showed efficient wound healing potential of silver nanoparticles as compared to pre-existing drug povidone-iodine, i.e., the percentage reduction in wound area after therapy is 96.09% in case of biosynthesized silver nanoparticle-treated group, 97.7% reduction in chemically synthesized silver nanoparticle-treated group, 64.28% reduction in case of pre-existing drug povidone-iodine-treated group, 37.5% reduction in case of diabetic control group (diabetic), and 97.5% reduction in normal control group (non-diabetic). Results showed that biosynthesized silver nanoparticles showed less toxicity with respect to liver and kidney functions. Skin histology results showed increased sign of wound healing in biosynthesized silver nanoparticles. Hematology results showed no such variation.Conclusion: The study will help to synthesize new economically viable potential biosynthesized nanoparticles along with providing the approach to develop the medication at nanoscale level.


2020 ◽  
Author(s):  
Chen Hu ◽  
Chenyu Chu ◽  
Li Liu ◽  
Shue Jin ◽  
Renli Yang ◽  
...  

AbstractStructural properties of biomaterials play critical roles in guiding cell behaviors and influence the immune response against them. We fabricated electrospun membranes with three types of surface topography (Random, Aligned, and Latticed). The aligned membranes showed immunomodulatory ability, and led to faster wound healing, reduced fibrotic response and enhanced regeneration of cutaneous appendages when used in skin wound repair. Based on that, we performed single-cell RNA sequencing analysis on cells from wounded mouse skin in the presence or absence of the Aligned scaffold. Keratinocytes, fibroblasts, and immune cells including neutrophils, monocytes, macrophages, dendritic cells, and T cells showed diverse cellular heterogeneity. More hair follicle progenitor cells, inner root sheath cells (anagen-related) and fibroblast subsets were found in the Aligned group, which corresponded to the improved regeneration of hair follicles and faster wound closure in the presence of scaffold. Immune responses towards the biomaterial differed from that of control group. In aligned samples, infiltrated macrophages and neutrophils were reduced, whereas more effector T cells were recruited. The time course of immune response was possibly advanced towards an adaptive immunity-dominant stage by the scaffold. The microenvironment around scaffold involved intricate interplay of immune cells and cutaneous cells, and wound healing was the comprehensive results of numerous influencing factors working together.


Author(s):  
Hana M. Hammad ◽  
Amer Imraish ◽  
Maysa Al-Hussaini ◽  
Malek Zihlif ◽  
Amani A. Harb ◽  
...  

Objective: Achillea fragrantissima L. (Asteraceae) is a traditionally used medicinal herb in the rural communities of Jordan. Methods: The present study evaluated the efficacy of the ethanol extract of this species on angiogenesis in both, ex vivo using rat aortic ring assay and in vivo using rat excision wound model. Results: In concentrations of 50 and 100 µg/ml, the ethanol extract showed angiogenic stimulatory effect and significantly increased length of capillary protrusions around aorta rings of about 60% in comparison to those of untreated aorta rings. In MCF-7 cells, the ethanol extract of A. fragrantissima stimulates the production of VEGF in a dose-dependent manner. 1% and 5% of ethanol extract of A. fragrantissima containing vaseline based ointment was applied on rat excision wounds for six days and was found to be effective in wound healing and maturation of the scar. Both preparations resulted in better wound healing when compared to the untreated control group and vaseline-treated group. This effect was comparable to that induced by MEBO, the positive control. Conclusion: The results indicate that A. fragrantissima has a pro-angiogenic effect, which may act through the VEGF signaling pathway.


Author(s):  
Joon M. Jung ◽  
Hae K. Yoon ◽  
Chang J. Jung ◽  
Soo Y. Jo ◽  
Sang G. Hwang ◽  
...  

Cold plasma can be beneficial for promoting skin wound healing and has a high potential of being effectively used in treating various wounds. Our aim was to verify the effect of cold plasma in accelerating wound healing and investigate its underlying mechanism in vitro and in vivo. For the in vivo experiments, 2 full-thickness dermal wounds were created in each mouse (n = 30). While one wound was exposed to 2 daily plasma treatments for 3 min, the other wound served as a control. The wounds were evaluated by imaging and histological analyses at 4, 7, and 11 days post the wound infliction process. Immunohistochemical studies were also performed at the same time points. In vitro proliferation and scratch assay using HaCaT keratinocytes and fibroblasts were performed. The expression levels of wound healing–related genes were analyzed by real-time polymerase chain reaction and western blot analysis. On day 7, the wound healing rates were 53.94% and 63.58% for the control group and the plasma-treated group, respectively. On day 11, these rates were 76.05% and 93.44% for the control and plasma-treated groups, respectively, and the difference between them was significant ( P = .039). Histological analysis demonstrated that plasma treatment promotes the formation of epidermal keratin and granular layers. Immunohistochemical studies also revealed that collagen 1, collagen 3, and alpha-smooth muscle actin appeared more abundantly in the plasma-treated group than in the control group. In vitro, the proliferation of keratinocytes was promoted by plasma exposure. Scratch assay showed that fibroblast exposure to plasma increased their migration. The expression levels of collagen 1, collagen 3, and alpha-smooth muscle actin were elevated upon plasma treatment. In conclusion, cold plasma can accelerate skin wound healing and is well tolerated.


Revista CERES ◽  
2011 ◽  
Vol 58 (2) ◽  
pp. 149-154
Author(s):  
Alexandre Couto Tsiomis ◽  
Andréa Pacheco Batista Borges ◽  
Ana Paula Falci Daibert ◽  
Tatiana Schmitz Duarte ◽  
Emily Correna Carlo Reis ◽  
...  

Bone loss, either by trauma or other diseases, generates an increasing need for substitutes of this tissue. This study evaluated Bioglass as a bone substitute in the regeneration of the alveolar bone in mandibles of dogs by clinical, surgical and radiological analysis. Twenty-eight adult dogs were randomly separated into two equal groups. In each animal, a bone defect was created on the vestibular surface of the alveolar bone between the roots of the fourth right premolar tooth. In the treated group, the defect was immediately filled with bioglass, while in the control, it remained unfilled. Clinical evaluations were performed daily for a week, as well as x-rays immediately after surgery and at 8, 14, 21, 42, 60, 90 and 120 days post-operative. Most animals in both groups showed no signs of inflammation and wound healing was similar. Radiographic examination revealed a gradual increase of radiopacity in the region of the defect in the control group. In the treated group, initial radiopacity was higher than that of adjacent bone, decreasing until 21 days after surgery. Then it gradually increased until 120 days after surgery, when the defect became undetectable. The results showed that Bioglass integrates into bone tissue, is biocompatible and reduced the period for complete bone regeneration.


Author(s):  
Letícia Fuganti CAMPOS ◽  
Eliane TAGLIARI ◽  
Thais Andrade Costa CASAGRANDE ◽  
Lúcia de NORONHA ◽  
Antônio Carlos L. CAMPOS ◽  
...  

ABSTRACT Background: Chronic wounds in patients with Diabetes Mellitus often become incurable due to prolonged and excessive production of inflammatory cytokines. The use of probiotics modifies the intestinal microbiota and modulates inflammatory reactions. Aim: To evaluate the influence of perioperative supplementation with probiotics in the cutaneous healing process in diabetic rats. Methods: Forty-six rats were divided into four groups (C3, P3, C10, P10) according to the treatment (P=probiotic or C=control, both orally administered) and day of euthanasia, 3rd or 10th postoperative days. All rats were induced to Diabetes Mellitus 72 h before starting the experiment with alloxan. Supplementation was initiated five days before the incision and maintained until euthanasia. Scalpel incision was guided by a 2x2 cm mold and the wounds were left to heal per second-intention. The wounds were digitally measured. Collagen densitometry was done with Picrosirius Red staining. Histological parameters were analyzed by staining by H&E. Results: The contraction of the wound was faster in the P10 group which resulted in a smaller scar area (p=0.011). There was an increase in type I collagen deposition from the 3rd to the 10th postoperative day in the probiotic groups (p=0.016), which did not occur in the control group (p=0.487). The histological analysis showed a better degree of healing in the P10 group (p=0.005), with fewer polymorphonuclear (p<0.001) and more neovessels (p=0.001). Conclusions: Perioperative supplementation of probiotics stimulates skin wound healing in diabetic rats, possibly due to attenuation of the inflammatory response and increased neovascularization and type I collagen deposition.


Sign in / Sign up

Export Citation Format

Share Document