scholarly journals Analysis and optimization of cooling channels performances for industrial extrusion dies

2021 ◽  
Author(s):  
Riccardo Pelacci ◽  
Marco Negozio ◽  
Barbara Reggiani ◽  
Lorenzo Donati ◽  
Luca Tomesani

Liquid nitrogen cooling is widely used in the extrusion industrial practice in order to increase the production rate, to reduce the die temperature and to avoid defects on the profile exit surfaces resulting from an excessive heating. However, the efficiency of the cooling is deeply affected by position and design of the liquid nitrogen channel so that numerical modelling is gaining an increasing industrial interest in relation to the possibility offered to optimize the channel design without expensive and time-consuming experimental trials. In this work, a numerical FE model developed within COMSOL Multiphysics® is proposed and validated against experimental trials performed in industrial environment. The model combines the 3D simulation of the extrusion process with a 1D model of the cooling channel thus allowing the testing of a number of different solutions at the die design stage. The global aim of this work is the assessment of the liquid nitrogen cooling efficiency in the extrusion of an industrial aluminum profile and the proof of the potentials offered by numerical models to get an optimized channel design in terms of cooling efficiency, die thermal balancing and reduction of liquid nitrogen consumption.

2021 ◽  
Author(s):  
Riccardo Pelaccia ◽  
Barbara Reggiani ◽  
Marco Negozio ◽  
Lorenzo Donati

Abstract Nowadays, the liquid nitrogen cooling in aluminium extrusion is a widely adopted industrial practice to increase the process productivity as well as to improve the extruded profile surface quality by reducing the profile exit temperatures. The cooling channels are commonly designed on the basis of die maker experience only, usually obtaining modest performances in terms of cooling efficiency. Trial-and-error approach is time and cost consuming, thus providing a relevant industrial interest in the development of reliable numerical simulations able to foresee and optimize the nitrogen cooling effect during the die design stage. In this work, an extensive experimental campaign was performed during the extrusion process of an AA6060 industrial hollow profile, in different conditions of nitrogen flow rate and ram speed. The monitored data (die and profile temperatures and extrusion load) were compared with the outputs of a fast and efficient numerical model proposed by the authors, and developed in the COMSOL Multiphysics code, able to compute not only the effect of nitrogen liquid flow but also the gaseous condition. The results of the simulations showed a good agreement with experimental data and evidenced how far was the experimental cooling channel design from an optimized condition.


2021 ◽  
Vol 11 (9) ◽  
pp. 4136
Author(s):  
Rosario Pecora

Oleo-pneumatic landing gear is a complex mechanical system conceived to efficiently absorb and dissipate an aircraft’s kinetic energy at touchdown, thus reducing the impact load and acceleration transmitted to the airframe. Due to its significant influence on ground loads, this system is generally designed in parallel with the main structural components of the aircraft, such as the fuselage and wings. Robust numerical models for simulating landing gear impact dynamics are essential from the preliminary design stage in order to properly assess aircraft configuration and structural arrangements. Finite element (FE) analysis is a viable solution for supporting the design. However, regarding the oleo-pneumatic struts, FE-based simulation may become unpractical, since detailed models are required to obtain reliable results. Moreover, FE models could not be very versatile for accommodating the many design updates that usually occur at the beginning of the landing gear project or during the layout optimization process. In this work, a numerical method for simulating oleo-pneumatic landing gear drop dynamics is presented. To effectively support both the preliminary and advanced design of landing gear units, the proposed simulation approach rationally balances the level of sophistication of the adopted model with the need for accurate results. Although based on a formulation assuming only four state variables for the description of landing gear dynamics, the approach successfully accounts for all the relevant forces that arise during the drop and their influence on landing gear motion. A set of intercommunicating routines was implemented in MATLAB® environment to integrate the dynamic impact equations, starting from user-defined initial conditions and general parameters related to the geometric and structural configuration of the landing gear. The tool was then used to simulate a drop test of a reference landing gear, and the obtained results were successfully validated against available experimental data.


Author(s):  
Bahaa Shaqour ◽  
Mohammad Abuabiah ◽  
Salameh Abdel-Fattah ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
...  

AbstractAdditive manufacturing is a promising tool that has proved its value in various applications. Among its technologies, the fused filament fabrication 3D printing technique stands out with its potential to serve a wide variety of applications, ranging from simple educational purposes to industrial and medical applications. However, as many materials and composites can be utilized for this technique, the processability of these materials can be a limiting factor for producing products with the required quality and properties. Over the past few years, many researchers have attempted to better understand the melt extrusion process during 3D printing. Moreover, other research groups have focused on optimizing the process by adjusting the process parameters. These attempts were conducted using different methods, including proposing analytical models, establishing numerical models, or experimental techniques. This review highlights the most relevant work from recent years on fused filament fabrication 3D printing and discusses the future perspectives of this 3D printing technology.


2005 ◽  
Vol 128 (3) ◽  
pp. 267-272 ◽  
Author(s):  
Hua Ye ◽  
Harry Efstathiadis ◽  
Pradeep Haldar

Understanding the thermal performance of power modules under liquid nitrogen cooling is important for the design of cryogenic power electronic systems. When the power device is conducting electrical current, heat is generated due to Joule heating. The heat needs to be efficiently dissipated to the ambient in order to keep the temperature of the device within the allowable range; on the other hand, it would be advantageous to boost the current levels in the power devices to the highest possible level. Projecting the junction temperature of the power module during cryogenic operation is a crucial step in designing the system. In this paper, we present the thermal simulations of two different types of power metal-oxide semiconductor field effect transistor modules used to build a cryogenic inverter under liquid nitrogen pool cooling and discussed their implications on the design of the system.


2018 ◽  
Vol 36 (6) ◽  
pp. 1609-1628 ◽  
Author(s):  
Chengzheng Cai ◽  
Feng Gao ◽  
Yugui Yang

Liquid nitrogen is a type of super-cryogenic fluid, which can cause the reservoir temperature to decrease significantly and thereby induce formation rock damage and cracking when it is injected into the wellbore as fracturing fluid. An experimental set-up was designed to monitor the acoustic emission signals of coal during its contact with cryogenic liquid nitrogen. Ultrasonic and tensile strength tests were then performed to investigate the effect of liquid nitrogen cooling on coal cracking and the changes in mechanical properties thereof. The results showed that acoustic emission phenomena occurred immediately as the coal sample came into contact with liquid nitrogen. This indicated that evident damage and cracking were induced by liquid nitrogen cooling. During liquid nitrogen injection, the ring-down count rate was high, and the cumulative ring-down counts also increased rapidly. Both the ring-down count rate and the cumulative ring-down counts during liquid nitrogen injection were much greater than those in the post-injection period. Liquid nitrogen cooling caused the micro-fissures inside the coal to expand, leading to a decrease in wave velocity and the deterioration in mechanical strength. The wave velocity, which was measured as soon as the sample was removed from the liquid nitrogen (i.e. the wave velocity was recorded in the cooling state), decreased by 14.46% on average. As the cryogenic samples recovered to room temperature, this value increased to 18.69%. In tensile strength tests, the tensile strengths of samples in cooling and cool-treated states were (on average) 17.39 and 31.43% less than those in initial state. These indicated that both during the cooling and heating processes, damage and cracking were generated within these coal samples, resulting in the acoustic emission phenomenon as well as the decrease in wave velocity and tensile strength.


Author(s):  
Xiao Li ◽  
Xiaoli Jiang ◽  
Hans Hopman

Flexible risers are one kind of flexible pipes that transport fluid between subsea facilities and topside structures. This pipe-like structure consists of multiple layers and its innermost carcass layer is designed for external hydrostatic pressure resistance. For the flexible risers used in ultra-deep water fields, the critical collapse pressure of the carcass layers is one of the dominant factors in their safety design. However, the complexity of the interlocked carcass design introduces significant difficulties and constraints into the engineering analysis. To facilitate the anti-collapse analysis, equivalent layer methods are demanded to help construct an equivalent pipe that performs a similar collapse behavior of the carcass. This paper proposes a strain energy based equivalent layer method which trying to bridge the equivalence between those two structures by considering equivalent geometric and material properties for the equivalent layer. Those properties are determined through strain energy equivalence and membrane stiffness equivalence. The strain energy of the carcass is obtained through numerical models and is then used in a derived equation set to calculate the equivalent properties for the equivalent layer. After all the equivalent properties have been determined, an equivalent layer FE model is built and used to predict the critical pressure of the carcass. The prediction result is compared to that of the full 3D carcass model as well as the equivalent models that built based on other existing equivalent methods, which shows that the proposed equivalent layer method gives a better performance on predicting the critical pressure of the carcass.


Author(s):  
David Hemberger ◽  
Dietmar Filsinger ◽  
Hans-Jörg Bauer

The production of bladed structures, e.g. turbine and compressor wheels, is a subject of statistical scatter. The blades are designed to be identical but differ due to small manufacturing tolerances. This so called mistuning can lead to increased vibration amplitudes compared to the ideal tuned case. The object of this study is to create and validate numerical models to evaluate such mistuning effects of turbine wheels for automotive turbocharger applications. As a basis for the numerical analysis vibration measurements under stand-still conditions were carried out by using a laser surface velocimeter (LSV). The scope of this investigation was to identify the mistuning properties of the turbine wheels namely the frequency deviation from the ideal, cyclic symmetrical tuned system. Experimental modal analyses as well as blade by blade measurements were performed. Moreover 3D scanning techniques were employed to determine geometric deviations. Numerical FE models and a simplified multi degree of freedom model (EBM) were created to reproduce the measured mistuning effects. The prediction of mode localization and the calculated amplitude amplification were evaluated. The best results were obtained with a FE model that employs individual sectorial stiffnesses. The results also indicate that the major contribution to mistuning is made by material inhomogeneities and not by geometric deviations from ideal dimensions. With the adjusted FE model a probabilistic study has been performed to investigate the influence of the mistuning on the amplitude amplification factor. It has been found that at a certain level of mistuning the amplification factor remains constant or slightly decreases. By introducing intentional mistuning a lower sensitivity as well as a decrease of the amplitude amplification could be achieved.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
F. Caputo ◽  
A. De Luca ◽  
A. Greco ◽  
A. Marro ◽  
A. Apicella ◽  
...  

Usually during the design of landing gear, simplified Finite Element (FE) models, based on one-dimensional finite elements (stick model), are used to investigate the in-service reaction forces involving each subcomponent. After that, the design of such subcomponent is carried out through detailed Global/Local FE analyses where, once at time, each component, modelled with three-dimensional finite elements, is assembled into a one-dimensional finite elements based FE model, representing the whole landing gear under the investigated loading conditions. Moreover, the landing gears are usually investigated also under a kinematic point of view, through the multibody (MB) methods, which allow achieving the reaction forces involving each subcomponent in a very short time. However, simplified stick (FE) and MB models introduce several approximations, providing results far from the real behaviour of the landing gear. Therefore, the first goal of this paper consists of assessing the effectiveness of such approaches against a 3D full-FE model. Three numerical models of the main landing gear of a regional airliner have been developed, according to MB, “stick,” and 3D full-FE methods, respectively. The former has been developed by means of ADAMS® software, the other two by means of NASTRAN® software. Once this assessment phase has been carried out, also the Global/Local technique has verified with regard to the results achieved by the 3D full-FE model. Finally, the dynamic behaviour of the landing gear has been investigated both numerically and experimentally. In particular, Magnaghi Aeronautica S.p.A. Company performed the experimental test, consisting of a drop test according to EASA CS 25 regulations. Concerning the 3D full-FE investigation, the analysis has been simulated by means of Ls-Dyna® software. A good level of accuracy has been achieved by all the developed numerical methods.


Sign in / Sign up

Export Citation Format

Share Document