Myelodysplasia in mice is associated with low bone mineralization and high levels of FGF-23

Author(s):  
Heike Weidner
Keyword(s):  
Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 2-2
Author(s):  
Annamaria Aprile ◽  
Laura Raggi ◽  
Mariangela Storto ◽  
Isabella Villa ◽  
Sarah Marktel ◽  
...  

In the last decade many studies unraveled the bone marrow (BM) niche regulation and crosstalk with hematopoietic stem cells (HSC) in steady state conditions and malignancies, but HSC-niche interactions are still underexplored in hematological inherited disorders. We have recently provided the first demonstration of impaired HSC function caused by an altered BM niche in a non-malignant disease, beta-thalassemia (BT) (Aprile et al., Blood 2020). BT is a congenital hemoglobin disorder resulting in severe anemia, ineffective erythropoiesis and multi-organ secondary complications, such as bone defects. It is one of the most globally widespread monogenic diseases, which can be cured by transplantation of HSC from compatible healthy donors or autologous HSC from patients upon gene therapy. Cases of graft failure have been reported, but causes have not been deeply investigated and might include an impaired HSC function and a defective supporting activity of the BM niche, worsened by age and disease progression. We showed that the prolonged residence of HSC into an altered BM stromal niche in BT Hbbth3/+ (th3) mice negatively affects stem cell number, quiescence and self-renewal. Moreover, we demonstrated that correction of HSC-stromal niche crosstalk rescues BT HSC function by in vivo reactivation of parathyroid hormone (PTH) signaling. Consistently with the common finding of osteoporosis in BT patients, we found reduced bone deposition and low levels of PTH also in the murine model. We investigated the potential mechanisms underlying the decreased PTH and bone defect and we focused on the role of fibroblast growth factor-23 (FGF-23). FGF-23 is a systemic hormone mainly secreted by osteocytes, which acts as negative regulator of bone metabolism by inhibiting bone mineralization and PTH production by parathyroid glands. Since FGF-23 is positively modulated by the anemia-related factor erythropoietin (EPO), we hypothesized that the high EPO levels in BT, subsequent to ineffective erythropoiesis, might contribute to increase FGF-23. We measured high levels of circulating FGF-23 in th3 mice (wt vs. th3: 399.7±69.77 vs. 1975±209.3 pg/ml, p<0.01) and also in BT patients (HD vs. THAL: 94.2±3.8 vs. 125.8±9.2 RU/ml, p<0.05). To provide proof of concept data of the causative role of FGF-23 on BT bone and stromal niche defects, we inhibited FGF-23 signaling. FGF-23 inhibition by in vivo administration of FGF-23 blocking peptide rescued the bone defect in th3 mice, by increasing trabecular bone mineral density (th3 vs. th3+FGF23inh: 117.7±3.3 vs. 181.1±6.9 mg/cm3, p<0.0001). Importantly, the treatment restored the frequency of HSC to levels comparable to wild-type controls by expanding the pool of quiescent cells (th3 vs. th3+FGF23inh: 0.03±0.002 vs. 0.07±0.0% on Linneg BM cells, p<0.0001). Consistently, we found increased the expression of key molecules by bone cells, such as Jagged-1 and osteopontin, involved in the functional crosstalk between HSC and the stromal niche. Interestingly, FGF-23 inhibition had also a positive anti-apoptotic effect on the expanded BM erythroid compartment, promoting the maturation of erythroid precursors, as already shown in models of secondary anemias. Preliminary evidence in BT patients showed negative correlations between FGF-23 levels and markers of bone homeostasis (e.g. osteocalcin and vitamin D) and positive correlations with makers of ineffective erythropoiesis (e.g. reticulocytes), thus proposing FGF-23 as the molecule at the crossroads of erythropoiesis and bone metabolism in BT. In vivo studies and molecular analysis in th3 mice and patients' samples will better unravel the causative role of EPO on FGF-23 levels in BT and the negative impact of high FGF-23 on bone mineralization and BM stromal niche-HSC interactions. Our findings uncover an underexplored role of FGF-23 in bone and BM niche defects in BT, as a condition of severe anemia and chronic EPO stimulation. The inhibition of FGF-23 signaling might provide a novel strategy to ameliorate bone compartment and restore HSC-BM niche interactions in BT, with a potential translational relevance in improving HSC transplantation approaches. Disclosures Motta: Sanofi Genzyme: Honoraria. Cappellini:BMS: Honoraria; CRISPR Therapeutics, Novartis, Vifor Pharma: Membership on an entity's Board of Directors or advisory committees; Genzyme/Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees.


JCI Insight ◽  
2020 ◽  
Vol 5 (15) ◽  
Author(s):  
Heike Weidner ◽  
Ulrike Baschant ◽  
Franziska Lademann ◽  
Maria G. Ledesma Colunga ◽  
Ekaterina Balaian ◽  
...  

2006 ◽  
Vol 50 (4) ◽  
pp. 802-813 ◽  
Author(s):  
Hamilton de Menezes Filho ◽  
Luiz Claudio G. de Castro ◽  
Durval Damiani

The hypophosphatemic conditions that interfere in bone mineralization comprise many hereditary or acquired diseases, all of them sharing the same pathophysiologic mechanism: reduction in the phosphate reabsorption by the renal tubuli. This process leads to chronic hyperphosphaturia and hypophosphatemia, associated with inappropriately normal or low levels of calcitriol, causing osteomalacia or rickets in children and osteomalacia in adults. X-linked hypophosphatemic rickets, autosomal-dominant hypophosphatemic rickets, and tumor-induced osteomalacia are the main syndromes involved in the hypophosphatemic rickets. Although these conditions exhibit different etiologies, there is a common link among them: increased activity of a phosphaturic factor, being the fibroblast growth factor 23 (FGF-23) the most studied one and to which is attributed a central role in the pathophysiology of the hyperphosphaturic disturbances. Activating mutations of FGF-23 and inactivating mutations in the PHEX gene (a gene on the X chromosome that codes for a Zn-metaloendopeptidase proteolytic enzyme which regulates the phosphate) involved in the regulation of FGF-23 have been identified and have been implicated in the pathogenesis of these disturbances. Genetic studies tend to show that the phosphorus homeostasis depends on a complex osteo-renal metabolic axis, whose mechanisms of interaction have been poorly understood so far. This paper reviews the current knowledge status concerning the pathophysiology of phosphate metabolism regulation and the pathophysiologic basis of hypophosphatemic rickets. It also analyzes the clinical picture and the therapeutic aspects of these conditions as well.


2019 ◽  
Vol 32 (7) ◽  
pp. 707-714 ◽  
Author(s):  
Yesim Kutluturk ◽  
Aysehan Akinci ◽  
Ibrahim Halil Ozerol ◽  
Saim Yologlu

Abstract Background Obesity is known to cause metabolic disturbances including insulin resistance, dyslipidemia and alters bone mineralization. The effects of obesity on fibroblast growth factor 23 (FGF-23), which is important in bone mineralization, have not yet been clarified. Our aim was to investigate the association between FGF-23 concentration and obesity-associated dysmetabolism. Methods Subjects comprised 46 obese children and adolescents. The same number of age-matched, healthy controls were recruited. Markers of bone mineralization and glucose metabolism were measured. Thyroid function and insulin resistance were investigated in both groups. In obese subjects; an oral glucose tolerance test (OGTT) was performed and hemoglobin A1c and lipid fractions were measured. Bone mineral density and hepatic steatosis were investigated. Results Serum FGF-23, α-klotho and 1,25(OH)2D3 concentrations were significantly lower while fasting insulin, fasting glucose, C-peptide and alkaline phosphatase (ALP) concentrations and homeostasis model assessment of insulin resistance (HOMA-IR) were significantly higher in the obese group compared to controls. A significant negative correlation was observed between free tri-iodothyronine (fT3) and both FGF-23 and α-klotho in the obese group. Significant negative correlation was found between FGF-23 and C-peptide and a positive correlation was found between FGF-23 and high density lipoprotein-cholesterol (HDL-c) in the obese subjects with impaired glucose tolerance (IGT). Significant negative correlations were found between FGF-23 and both fasting insulin levels and C-peptide levels in the obese subjects with hepatic steatosis. Conclusions In our study, insulin resistance-associated hyperinsulinism and/or lower 1,25(OH)2D3 levels, both present in obese children and adolescents, may lead to decreased serum FGF-23 concentrations in obese subjects.


Author(s):  
Melvin Khee Shing Leow ◽  
Shaillay Dogra ◽  
Xiaojia Ge ◽  
Khoon Leong Chuah ◽  
Huiling Liew ◽  
...  

Abstract Context Literature suggests that oncogenic osteomalacia is usually caused by a benign mesenchymal tumor secreting fibroblast growth factor subtype-23 (FGF-23), but the involvement of other phosphatonins has only been scarcely reported. We have previously published a seemingly typical case of oncogenic osteomalacia. Following curative neoplasm resection, we now report unique molecular characteristics and biology of this tumor. Case Description A 25-year-old man had been diagnosed with severe oncogenic osteomalacia that gradually crippled him over 6 years. 68Ga-DOTA-TATE positron emission tomography/computed tomography scan localized the culprit tumor to his left sole, which on resection revealed a deep fibrous histiocytoma displaying a proliferation of spindle cells with storiform pattern associated with multinucleated giant cells resembling osteoclasts. Circulating FGF-23, which was elevated more than 2-fold, declined to undetectable levels 24 h after surgery. Microarray analysis revealed increased tumor gene expression of the phosphatonins FGF-23, matrix extracellular phosphoglycoprotein (MEPE) and secreted frizzled-related protein subtype 4, with elevated levels of all 3 proteins confirmed through immunoblot analysis. Differential expression of genes involved in bone formation and bone mineralization were further identified. The patient made an astonishing recovery from being wheelchair bound to fully self-ambulant 2 months postoperatively. Conclusion This report describes oncogenic osteomalacia due to a deep fibrous histiocytoma, which coincidentally has been found to induce profound muscle weakness via the overexpression of 3 phosphatonins, which resolved fully upon radical resection of the tumor. Additionally, genes involved in bone formation and bone remodeling contribute to the molecular signature of oncogenic osteomalacia.


2005 ◽  
Vol 289 (6) ◽  
pp. F1170-F1182 ◽  
Author(s):  
Theresa J. Berndt ◽  
Susan Schiavi ◽  
Rajiv Kumar

Phosphate ions are critical for normal bone mineralization, and phosphate plays a vital role in a number of other biological processes such as signal transduction, nucleotide metabolism, and enzyme regulation. The study of rare disorders associated with renal phosphate wasting has resulted in the discovery of a number of proteins [fibroblast growth factor 23 (FGF-23), secreted frizzled related protein 4 (sFRP-4), matrix extracellular phosphoglycoprotein, and FGF 7 (FGF-7)] that decrease renal sodium-dependent phosphate transport in vivo and in vitro. The “phosphatonins,” FGF-23 and sFRP-4, also inhibit the synthesis of 1α,25-dihydroxyvitamin D, leading to decreased intestinal phosphate absorption and further reduction in phosphate retention by the organism. In this review, we discuss the biological properties of these proteins, alterations in their concentrations in various clinical disorders, and their possible physiological role.


2019 ◽  
Vol 3 (2) ◽  

Radiographic Mandibular Indices serve as easy and relatively cheap tools for evaluating bone mineralization. Objectives: To examine the effect of age and gender on three mandibular indices: the panoramic mandibular index (PMI), the mandibular ratio (MR) and the mandibular cortical index (MCI), among Libyan population. Methods: The three indices were measured on 317 digital (OPGs) of adult humans (155 males, 162 females). The sample was divided into six age groups (from 18-25 years through 56-65 years). The measurements were analyzed for interactions with age and sex, using SPSS (Statistical Package for Social Studies) software version no. 22. The tests employed were two way ANOVA, the unpaired T-test and chi-square test. Results: The mean PMI fluctuated between 0.37 s.d. 0.012 and 0.38 s.d. 0.012. among the sixth age groups. One-way ANOVA statistical test revealed no significant of age on PMI. On the other hand gender variation has effect on PMI, since independent sample t-test disclosed that the difference between the male and female PMI means statistically significant. ANOVA test showed that the means of MR among age groups showed a negative correlation i.e. MR mean declined from 3.01 in 18-25 age groups to 2.7 in 55-65 age groups. In contrary, the gender showed no effect on MR according two sample t-test at p> 0.05. In regards with MCI, statistical analysis showed that it affected by age that is C1 was decreasing by age while C2 and C3 were increased by age. Using chi square test the result indicated that there is a significant difference among the different age group and the two genders in MCI readings. Conclusion: PMI was influenced significantly by age but minimally by the gender. MR is not affected by gender but has a negative correlation with age. MCI is affected by both age and gender


JMS SKIMS ◽  
2011 ◽  
Vol 14 (2) ◽  
pp. 40-42
Author(s):  
Muzafar Maqsood Wani ◽  
Imtiaz Ahmed Wani

Major biologic function of activated vitamin D is to maintain normal blood levels of calcium and phosphorus, thus regulating bone mineralization. Research suggests that vitamin D may help in immunomodulation, regulating cell growth and 1,4 differentiation as well as some diverse unspecified functions. Overt vitamin D deficiency leads to hypocalcaemia, secondary hyperparathyroidism and increased bone turnover, which in prolonged and severe cases may cause rickets in children and osteomalacia in elderly.... JMS 2011;14(2):40-42


Sign in / Sign up

Export Citation Format

Share Document