Comparative Study on Antimicrobial Activity of Four Bangladeshi Medicinal Plants used as Antimicrobial Finishes on Cotton Fabric

Author(s):  
Ashraf M ◽  
◽  
Rahman MH ◽  
Rahman M ◽  
◽  
...  

Considering the post COVID-19 pandemic situation, it can be assumed that using safer clothing will be a great attraction point for consumers across the world. In that scenario, effective antimicrobial finishes that are readily available and cheap would contribute to the consumer demand of safer clothing. This study scrutinized the antimicrobial activity of bleached cotton fabric treated with extracts of Ocimum tenuiflorum (Basil), Mentha spicata (Spearmint), Centella asiatica (Indian pennywort) and Azadirachta indica (Neem) as antimicrobial finishes. The study aims at assessing the comparative activity of four abovementioned natural medicinal plants, which can be used as ecofriendly antimicrobial finishes for textiles. Bleached cotton fabric samples were treated with plant extractions following exhaust method and then evaluated by using ASTM E2149-01 method against gram-positive bacteria Staphylococcus aureus and gram-negative bacteria Escherichia coli. The results depicted that all the four samples showed antimicrobial activity with more than 95% reduction of micro-organisms. Among the four, Ocimum tenuiflorum (Basil) showed the best result against both E. coli and S. aureus with reduction percentage of 98.81% and 99.16% respectively. Although Azadirachta indica (Neem) has comparatively the lowest performance against E. coli, its antimicrobial activity against S. aureus is very close to Ocimum tenuiflorum (Basil).

Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 295
Author(s):  
Sebastián Candelaria-Dueñas ◽  
Rocío Serrano-Parrales ◽  
Marisol Ávila-Romero ◽  
Samuel Meraz-Martínez ◽  
Julieta Orozco-Martínez ◽  
...  

In Tehuacán-Cuicatlán valley (Mexico), studies have been carried out on the essential oils of medicinal plants with antimicrobial activity and it was found that they present compounds in common such as: α-pinene, β-pinene, carvacrol, eugenol, limonene, myrcene, ocimene, cineole, methyl salicylate, farnesene, and thymol. The goal of this study was to assess the antimicrobial activity of essential oils’ compounds. The qualitative evaluation was carried out by the Kirby Baüer agar diffusion technique in Gram-positive bacteria (11 strains), Gram-negative bacteria (18 strains), and yeasts (8 strains). For the determination of the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), the agar dilution method was used. All the evaluated compounds presented antimicrobial activity. The compounds eugenol and carvacrol showed the largest inhibition zones. Regarding yeasts, the compounds ocimene, cineole, and farnesene did not show any activity. The compounds eugenol, carvacrol, and thymol presented the lowest MIC; bactericidal effect was observed at MIC level for S. aureus 75MR, E. coli 128 MR, and C albicans CUSI, for different compounds, eugenol, carvacrol, and thymol. Finally, this study shows that the essential oils of plants used by the population of Tehuacán-Cuicatlán valley share compounds and some of them have antibacterial and fungicidal activity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jakob H. Viel ◽  
Amanda Y. van Tilburg ◽  
Oscar P. Kuipers

The ribosomally synthesized and post-translationally modified peptide mersacidin is a class II lanthipeptide with good activity against Gram-positive bacteria. The intramolecular lanthionine rings, that give mersacidin its stability and antimicrobial activity, are specific structures with potential applications in synthetic biology. To add the mersacidin modification enzymes to the synthetic biology toolbox, a heterologous expression system for mersacidin in Escherichia coli has recently been developed. While this system was able to produce fully modified mersacidin precursor peptide that could be activated by Bacillus amyloliquefaciens supernatant and showed that mersacidin was activated in an additional proteolytic step after transportation out of the cell, it lacked a mechanism for clean and straightforward leader processing. Here, the protease responsible for activating mersacidin was identified and heterologously produced in E. coli, improving the previously reported heterologous expression system. By screening multiple proteases, the stringency of proteolytic activity directly next to a very small lanthionine ring is demonstrated, and the full two-step proteolytic activation of mersacidin was elucidated. Additionally, the effect of partial leader processing on diffusion and antimicrobial activity is assessed, shedding light on the function of two-step leader processing.


2014 ◽  
Vol 59 (4) ◽  
pp. 412-421 ◽  
Author(s):  
A. Abedini ◽  
V. Roumy ◽  
S. Mahieux ◽  
A. Gohari ◽  
M.M. Farimani ◽  
...  

2019 ◽  
Vol 31 (5) ◽  
pp. 1077-1080
Author(s):  
Kottakki Naveen Kumar ◽  
Karteek Rao Amperayani ◽  
V. Ravi Sankar Ummdi ◽  
Uma Devi Parimi

A series 1,2,4-triazole piperine analogues (TP1-TP6) were designed and synthesized. The structures were confirmed using 1H NMR and 13C NMR. Antibacterial study was done using Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram-negative micro-organisms (E. coli and Pseudomonas aeruginosa) by disc diffusion method. Compound containing chloro substitution (TP6) showed the highest effect, while compound TP1, TP3, TP4, TP5 showed the moderate activity.


Author(s):  
Vipul Kumar ◽  
Anurag Chakraborty ◽  
Manpreet Kaur ◽  
Sony Pandey ◽  
Manoj Kumar Jena

Objective: This study was focused on to compare the antimicrobial activity of methanolic leaf extracts of tulsi and neem.Methods: We have chosen tulsi (Ocimum sanctum) and neem (Azadirachta indica) to compare their antimicrobial activity toward Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. Phytochemical extracts have been made by the use of methanol as solvent and dried leaf powder by the cold maceration extraction process. Phytochemical analysis for some secondary metabolites has been done using standard protocols. Nutrient agar plates were inoculated with the above-mentioned microorganisms by spreading bacterial inoculum on the surface of the media. Wells (6 mm in diameter) were punched in the agar. The phytochemical extracts of neem and tulsi were allowed to diffuse into the medium, and after incubation of 24 h at 37°C, the zones of inhibition were observed.Results: Statistical analysis showed that tulsi was more effective toward S. aureus while neem was more effective toward E. coli. Minimum inhibitory concentration (MIC) of tulsi for both the microorganisms was 0.4 g/ml, and the MIC of neem for both the microorganisms was 0.2 g/ml. When both the tulsi and neem extract were mixed with each other for every concentration at equal volume, they have shown better effects in comparison to individual neem or tulsi extract and also the MIC got reduced to 0.2 g/ml for both the bacteria.Conclusions: Leaf extracts of both the A. indica and O. sanctum have shown antimicrobial activity against E. coli and S. aureus. A. indica has higher antimicrobial activity against S. aureus, whereas the O. sanctum was found to be more effective against E. coli (indicated by the zone of inhibition). When both the extracts were mixed with each other, they have shown a better effect toward both bacteria.


BMC Chemistry ◽  
2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Tsvetinka Grozdanova ◽  
Boryana Trusheva ◽  
Kalina Alipieva ◽  
Milena Popova ◽  
Lyudmila Dimitrova ◽  
...  

AbstractNatural deep eutectic solvents (NADES) are a new alternative to toxic organic solvents. Their constituents are primary metabolites, non-toxic, biocompatible and sustainable. In this study four selected NADES were applied for the extraction of two medicinal plants: Sideritis scardica, and Plantago major as an alternative to water-alcohol mixtures, and the antimicrobial and genotoxic potential of the extracts were studied. The extraction efficiency was evaluated by measuring the extracted total phenolics, and total flavonoids. Best extraction results for total phenolics for the studied plants were obtained with choline chloride-glucose 5:2 plus 30% water; but surprisingly these extracts were inactive against all tested microorganisms. Extracts with citric acid-1,2-propanediol 1:4 and choline chloride-glycerol 1:2 showed good activity against S. pyogenes, E. coli, S. aureus, and C. albicans. Low genotoxicity and cytotoxicity were observed for all four NADES and the extracts with antimicrobial activity. Our results confirm the potential of NADESs for extraction of bioactive constituents of medicinal plants and further suggest that NADES can improve the effects of bioactive extracts. Further studies are needed to clarify the influence of the studied NADES on the bioactivity of dissolved substances, and the possibility to use such extracts in the pharmaceutical and food industry.


2013 ◽  
Vol 68 (5-6) ◽  
pp. 191-197 ◽  
Author(s):  
Birkan Açıkgöz ◽  
İskender Karaltı ◽  
Melike Ersöz ◽  
Zeynep M. Coşkun ◽  
Gülşah Çobanoğlu ◽  
...  

The present study explores the antimicrobial activity and cytotoxic effects in culture assays of two fruticose soil lichens, Cladonia rangiformis Hoffm. and Cladonia convoluta (Lamkey) Cout., to contribute to possible pharmacological uses of lichens. In vitro antimicrobial activities of methanol and chloroform extracts against two Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), two Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus), and the yeast Candida albicans were examined using the paper disc method and through determination of minimal inhibitory concentrations (MICs). The data showed the presence of antibiotic substances in the chloroform and the methanol extracts of the lichen species. The chloroform extracts exhibited more signifi cant antimicrobial activity than the methanol extracts. However, a higher antifungal activity was noted in the methanol extract of C. rangiformis. The maximum antimicrobial activity was recorded for the chloroform extract of C. convoluta against E. coli. The cytotoxic effects of the lichen extracts on human breast cancer MCF-7 cells were evaluated by the trypan blue assay yielding IC50 values of ca. 173 and 167 μg/ml for the extracts from C. rangiformis and C. convoluta, respectively.


2017 ◽  
Vol 6 (5) ◽  
pp. 307-310
Author(s):  
Refaz Ahmad Dar ◽  
◽  
Iram Saba ◽  
Shahnawaz ◽  
Parvaiz Hassan Qazi ◽  
...  

The purpose of this work was to evaluate the antimicrobial potential of endophytic fungi isolated from different high value medicinal plants of Kashmir valley. Evaluation of some endophytes has been carried for their possible antimicrobial activity from various parts of medicinal plants belonging to Kashmir valley (India). A total of twenty-eight fungal endophytes were isolated from the different parts of selected medicinal plants. Dichloromethane (DCM) extracts of all the morphologically different endophytes were prepared and subsequently checked for antimicrobial activities. Eight isolates showed good activity against gram positive bacteria with two isolates showing promising activity with MIC in the range of 0.5 – 1µg/ml. All the isolated endophytic extracts were completely devoid of antifungal activity. The seven-active endophytic fungal cultures were identified by ITS4 and ITS5 gene sequencing.


1997 ◽  
Vol 25 (02) ◽  
pp. 175-180 ◽  
Author(s):  
Abdulaziz M. Alkhawajah

Juglans regia L. bark is used in some countries as a toothbrush and as a dye for coloring the lips for cosmetic purposes. Its extract showed a broad spectrum antimicrobial activity in a dose dependent manner. It inhibited the growth of several species of pathogenic micro-organisms representing Gram-positive bacteria (Staphylococcus aureus and Streptococcus mutans), Gram-negative bacteria (Esherichia coli and Pseudomonas aeruginosa) and a pathogenic yeast (Candida albicans). The extract has either synergistic or additive action when tested with a wide range of antibacterial drugs. It also increased the pH of saliva. Thus, brushing the teeth with this bark may improve oral hygiene, prevent plaque and caries formation, and reduce the incidence of gingival and periodontal infections.


Sign in / Sign up

Export Citation Format

Share Document