A new algorithm for producing quantum circuits using KAK decompositions

2006 ◽  
Vol 6 (1) ◽  
pp. 67-80
Author(s):  
M.Y. Nakajima ◽  
Y. Kawano ◽  
H. Sekigawa

We provide a new algorithm that translates a unitary matrix into a quantum circuit according to the G=KAK theorem in Lie group theory. With our algorithm, any matrix decomposition corresponding to type-AIII KAK decompositions can be derived according to the given Cartan involution. Our algorithm contains, as its special cases, Cosine-Sine decomposition (CSD) and Khaneja-Glaser decomposition (KGD) in the sense that it derives the same quantum circuits as the ones obtained by them if we select suitable Cartan involutions and square root matrices. The selections of Cartan involutions for computing CSD and KGD will be shown explicitly. As an example, we show explicitly that our method can automatically reproduce the well-known efficient quantum circuit for the $n$-qubit quantum Fourier transform.

2009 ◽  
Vol 9 (5&6) ◽  
pp. 423-443
Author(s):  
Y. Nakajima ◽  
Y. Kawano ◽  
H. Sekigawa ◽  
M. Nakanishi ◽  
S. Yamashita ◽  
...  

We study the problem of designing minimal quantum circuits for any operations on $n$ qudits by means of the cosine-sine decomposition. Our method is based on a divide-and-conquer strategy. In that strategy, the size of the produced quantum circuit depends on whether the partitioning is balanced. We provide a new cosine-sine decomposition based on a balanced partitioning for $d$-level systems. The produced circuit is not asymptotically optimal except when $d$ is a power of two, but, when the number of qudits $n$ is small, our method can produce the smallest quantum circuit compared to the circuits produced by other synthesis methods. For example, when $d=3$ (three-level systems) and $n=2$ (two qudits), then the number of two-qudit operations called CINC, which is a generalized versions of CNOT, is 36 whereas the previous method needs 156 CINC gates. Moreover, we show that our method is useful for designing a polynomial-size quantum circuit for the radix-$d$ quantum Fourier transform.


2003 ◽  
Vol 14 (05) ◽  
pp. 777-796 ◽  
Author(s):  
ANDREAS KLAPPENECKER ◽  
MARTIN RÖTTELER

The design of efficient quantum circuits is an important issue in quantum computing. It is in general a formidable task to find a highly optimized quantum circuit for a given unitary matrix. We propose a quantum circuit design method that has the following unique feature: It allows to construct efficient quantum circuits in a systematic way by reusing and combining a set of highly optimized quantum circuits. Specifically, the method realizes a quantum circuit for a given unitary matrix by implementing a linear combination of representing matrices of a group, which have known fast quantum circuits. We motivate and illustrate this method by deriving extremely efficient quantum circuits for the discrete Hartley transform and for the fractional Fourier transforms. The sound mathematical basis of this design method allows to give meaningful and natural interpretations of the resulting circuits. We demonstrate this aspect by giving a natural interpretation of known teleportation circuits.


Author(s):  
Dafang Zhao ◽  
Muhammad Aamir Ali ◽  
Artion Kashuri ◽  
Hüseyin Budak ◽  
Mehmet Zeki Sarikaya

Abstract In this paper, we present a new definition of interval-valued convex functions depending on the given function which is called “interval-valued approximately h-convex functions”. We establish some inequalities of Hermite–Hadamard type for a newly defined class of functions by using generalized fractional integrals. Our new inequalities are the extensions of previously obtained results like (D.F. Zhao et al. in J. Inequal. Appl. 2018(1):302, 2018 and H. Budak et al. in Proc. Am. Math. Soc., 2019). We also discussed some special cases from our main results.


2021 ◽  
Vol 20 (7) ◽  
Author(s):  
Ismail Ghodsollahee ◽  
Zohreh Davarzani ◽  
Mariam Zomorodi ◽  
Paweł Pławiak ◽  
Monireh Houshmand ◽  
...  

AbstractAs quantum computation grows, the number of qubits involved in a given quantum computer increases. But due to the physical limitations in the number of qubits of a single quantum device, the computation should be performed in a distributed system. In this paper, a new model of quantum computation based on the matrix representation of quantum circuits is proposed. Then, using this model, we propose a novel approach for reducing the number of teleportations in a distributed quantum circuit. The proposed method consists of two phases: the pre-processing phase and the optimization phase. In the pre-processing phase, it considers the bi-partitioning of quantum circuits by Non-Dominated Sorting Genetic Algorithm (NSGA-III) to minimize the number of global gates and to distribute the quantum circuit into two balanced parts with equal number of qubits and minimum number of global gates. In the optimization phase, two heuristics named Heuristic I and Heuristic II are proposed to optimize the number of teleportations according to the partitioning obtained from the pre-processing phase. Finally, the proposed approach is evaluated on many benchmark quantum circuits. The results of these evaluations show an average of 22.16% improvement in the teleportation cost of the proposed approach compared to the existing works in the literature.


2003 ◽  
Vol 70 (5) ◽  
pp. 661-667 ◽  
Author(s):  
A. S. El-Karamany

A general model of generalized linear thermo-viscoelasticity for isotropic material is established taking into consideration the rheological properties of the volume. The given model is applicable to three generalized theories of thermoelasticity: the generalized theory with one (Lord-Shulman theory) or with two relaxation times (Green-Lindsay theory) and with dual phase-lag (Chandrasekharaiah-Tzou theory) as well as to the dynamic coupled theory. The cases of thermo-viscoelasticity of Kelvin-Voigt model or thermoviscoelasticity ignoring the rheological properties of the volume can be obtained from the given model. The equations of the corresponding thermoelasticity theories result from the given model as special cases. A formulation of the boundary integral equation (BIE) method, fundamental solutions of the corresponding differential equations are obtained and an example illustrating the BIE formulation is given.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
A. Ramesh Chandra ◽  
Jan de Boer ◽  
Mario Flory ◽  
Michal P. Heller ◽  
Sergio Hörtner ◽  
...  

Abstract We propose that finite cutoff regions of holographic spacetimes represent quantum circuits that map between boundary states at different times and Wilsonian cutoffs, and that the complexity of those quantum circuits is given by the gravitational action. The optimal circuit minimizes the gravitational action. This is a generalization of both the “complexity equals volume” conjecture to unoptimized circuits, and path integral optimization to finite cutoffs. Using tools from holographic $$ T\overline{T} $$ T T ¯ , we find that surfaces of constant scalar curvature play a special role in optimizing quantum circuits. We also find an interesting connection of our proposal to kinematic space, and discuss possible circuit representations and gate counting interpretations of the gravitational action.


2021 ◽  
pp. 2150360
Author(s):  
Wanghao Ren ◽  
Zhiming Li ◽  
Yiming Huang ◽  
Runqiu Guo ◽  
Lansheng Feng ◽  
...  

Quantum machine learning is expected to be one of the potential applications that can be realized in the near future. Finding potential applications for it has become one of the hot topics in the quantum computing community. With the increase of digital image processing, researchers try to use quantum image processing instead of classical image processing to improve the ability of image processing. Inspired by previous studies on the adversarial quantum circuit learning, we introduce a quantum generative adversarial framework for loading and learning a quantum image. In this paper, we extend quantum generative adversarial networks to the quantum image processing field and show how to learning and loading an classical image using quantum circuits. By reducing quantum gates without gradient changes, we reduced the number of basic quantum building block from 15 to 13. Our framework effectively generates pure state subject to bit flip, bit phase flip, phase flip, and depolarizing channel noise. We numerically simulate the loading and learning of classical images on the MINST database and CIFAR-10 database. In the quantum image processing field, our framework can be used to learn a quantum image as a subroutine of other quantum circuits. Through numerical simulation, our method can still quickly converge under the influence of a variety of noises.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 592
Author(s):  
Piotr Czarnik ◽  
Andrew Arrasmith ◽  
Patrick J. Coles ◽  
Lukasz Cincio

Achieving near-term quantum advantage will require accurate estimation of quantum observables despite significant hardware noise. For this purpose, we propose a novel, scalable error-mitigation method that applies to gate-based quantum computers. The method generates training data {Xinoisy,Xiexact} via quantum circuits composed largely of Clifford gates, which can be efficiently simulated classically, where Xinoisy and Xiexact are noisy and noiseless observables respectively. Fitting a linear ansatz to this data then allows for the prediction of noise-free observables for arbitrary circuits. We analyze the performance of our method versus the number of qubits, circuit depth, and number of non-Clifford gates. We obtain an order-of-magnitude error reduction for a ground-state energy problem on 16 qubits in an IBMQ quantum computer and on a 64-qubit noisy simulator.


2021 ◽  
pp. 3-12
Author(s):  
A. Girsh

The Euclidean plane and Euclidean space themselves do not contain imaginary elements by definition, but are inextricably linked with them through special cases, and this leads to the need to propagate geometry into the area of imaginary values. Such propagation, that is adding a plane or space, a field of imaginary coordinates to the field of real coordinates leads to various variants of spaces of different dimensions, depending on the given axiomatics. Earlier, in a number of papers, were shown examples for solving some urgent problems of geometry using imaginary geometric images [2, 9, 11, 13, 15]. In this paper are considered constructions of orthogonal and diametrical positions of circles on a complex plane. A generalization has been made of the proposition about a circle on the complex plane orthogonally intersecting three given spheres on the proposition about a sphere in the complex space orthogonally intersecting four given spheres. Studies have shown that the diametrical position of circles on the Euclidean E-plane is an attribute of the orthogonal position of the circles’ imaginary components on the pseudo-Euclidean M-plane. Real, imaginary and degenerated to a point circles have been involved in structures and considered, have been demonstrated these circles’ forms, properties and attributes of their orthogonal position. Has been presented the construction of radical axes and a radical center for circles of the same and different types. A propagation of 2D mutual orthogonal position of circles on 3D spheres has been made. In figures, dashed lines indicate imaginary elements.


Sign in / Sign up

Export Citation Format

Share Document