scholarly journals A Nonconjugated Radical Polymer with Stable Red Luminescence in Solid State

Author(s):  
Zhaoyu Wang ◽  
Xinhui Zou ◽  
Yi Xie ◽  
Haoke Zhang ◽  
lianrui hu ◽  
...  

<p><b>Luminescent organic radicals have attracted much attention due to its distinctive open-shell structure and all-in-one properties on optoelectronics</b><b>, electronics</b><b>, and magnetics</b><b>. However, organic radicals are usually instable</b><b> and only very limited stable structures with π-radicals can </b><b>exhibit luminescent property</b><b> in the isolated state, most of which originate from the family of triphenylmethyl derivatives</b><b>. Here, we report an unusual radical luminescence phenomenon that nonconjugated radical polymer can readily emits red luminescence at ~635 nm in the solid state. A traditional luminescence quencher, 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)</b><b>, was turned into a red chromophore when grafted onto a polymer backbone. Experimental data confirms the emission is associated with the nitroxide radicals and is also affected by the packing of polymer. As a proof of concept, a biomedical application in intracellular ascorbic acid visualization is demonstrated. This work discloses a novel class of luminescent radicals and provides a distinctive and simple pathway for stable radical luminescence. </b></p>

2020 ◽  
Author(s):  
Zhaoyu Wang ◽  
Xinhui Zou ◽  
Yi Xie ◽  
Haoke Zhang ◽  
lianrui hu ◽  
...  

<p><b>Luminescent organic radicals have attracted much attention due to its distinctive open-shell structure and all-in-one properties on optoelectronics</b><b>, electronics</b><b>, and magnetics</b><b>. However, organic radicals are usually instable</b><b> and only very limited stable structures with π-radicals can </b><b>exhibit luminescent property</b><b> in the isolated state, most of which originate from the family of triphenylmethyl derivatives</b><b>. Here, we report an unusual radical luminescence phenomenon that nonconjugated radical polymer can readily emits red luminescence at ~635 nm in the solid state. A traditional luminescence quencher, 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)</b><b>, was turned into a red chromophore when grafted onto a polymer backbone. Experimental data confirms the emission is associated with the nitroxide radicals and is also affected by the packing of polymer. As a proof of concept, a biomedical application in intracellular ascorbic acid visualization is demonstrated. This work discloses a novel class of luminescent radicals and provides a distinctive and simple pathway for stable radical luminescence. </b></p>


Author(s):  
Natasha Alechina ◽  
Hans van Ditmarsch ◽  
Rustam Galimullin ◽  
Tuo Wang

AbstractCoalition announcement logic (CAL) is one of the family of the logics of quantified announcements. It allows us to reason about what a coalition of agents can achieve by making announcements in the setting where the anti-coalition may have an announcement of their own to preclude the former from reaching its epistemic goals. In this paper, we describe a PSPACE-complete model checking algorithm for CAL that produces winning strategies for coalitions. The algorithm is implemented in a proof-of-concept model checker.


2021 ◽  
pp. 2130005
Author(s):  
Qing Huang ◽  
Gongxuan Chen ◽  
Ping Zheng ◽  
Wei Li ◽  
Tian Wu

The demand for electrical energy storage (EES) is ever increasing in order to develop better batteries. NASICON-structured Na ion conductor represents a class of solid electrolytes, which is of great interest due to its superior ionic conductivity and stable structures. They are widely employed in all-solid-state ion batteries, all-solid-state air batteries, and hybrid batteries. In this review, their structure, composition, properties, and applications for next generation energy storage are reviewed.


Author(s):  
Hongbin Fang ◽  
Tse-Shao Chang ◽  
K. W. Wang

Multi-stable structures and materials have attracted extensive research interests because they can provide a wide spectrum of adaptive properties and functionalities. Recently, origami has been identified as an important source for achieving multi-stability and has been exploited for developing unconventional mechanical metamaterials and metastructures. Once the crease pattern and the constituent materials have been specified for an origami structure, its multi-stability profile becomes unchangeable. On the other hand, a controllable profile would be desirable to endow the origami structures and origami metamaterials with further adaptability and versatility. This research investigates how to integrate magnets with origami to fundamentally alter the stability profiles. By embedding magnets into the origami facets or vertices, the magnetic potential energy would modify the original elastic potential energy landscape both quantitatively and qualitatively. Taking the stacked Miura-ori structures as examples, we show that different magnet assignments could either enrich the original bistable profile into a tri-stable or quad-stable profile, or simplify it into a mono-stable profile. Simultaneously, such magnet-induced evolutions of stability profile would trigger essential changes of the structure’s mechanical properties, which are promising to be used for developing multi-functional devices or metamaterials/metastructures. In this paper, in addition to the analyses, proof-of-concept design and prototype are presented. The results of this research would open up a new path for designing origami structures and metamaterials with controllable stability profiles that can be harnessed for many novel applications.


2015 ◽  
Vol 112 (7) ◽  
pp. 1995-1999 ◽  
Author(s):  
Sam Emaminejad ◽  
Mehdi Javanmard ◽  
Chaitanya Gupta ◽  
Shuai Chang ◽  
Ronald W. Davis ◽  
...  

The controlled immobilization of proteins on solid-state surfaces can play an important role in enhancing the sensitivity of both affinity-based biosensors and probe-free sensing platforms. Typical methods of controlling the orientation of probe proteins on a sensor surface involve surface chemistry-based techniques. Here, we present a method of tunably controlling the immobilization of proteins on a solid-state surface using electric field. We study the ability to orient molecules by immobilizing IgG molecules in microchannels while applying lateral fields. We use atomic force microscopy to both qualitatively and quantitatively study the orientation of antibodies on glass surfaces. We apply this ability for controlled orientation to enhance the performance of affinity-based assays. As a proof of concept, we use fluorescence detection to indirectly verify the modulation of the orientation of proteins bound to the surface. We studied the interaction of fluorescently tagged anti-IgG with surface immobilized IgG controlled by electric field. Our study demonstrates that the use of electric field can result in more than 100% enhancement in signal-to-noise ratio compared with normal physical adsorption.


2021 ◽  
Author(s):  
◽  
Nurul Akmar Binti Che Zaudin

<p>Efficient and effective delivery of fertilisers, herbicides, pesticides and growth regulating compounds to plants is the subject of much ongoing research. The objective of this research was to develop nano-formulations for delivery of compounds to plants. Two formulations were developed: the first was solution-based focused on encapsulation of the active ingredient in a nanoemulsion. Nanoemulsions should be ideal for facilitating transfer of compounds to plant leaves as their size correlates well with the nanoscale surface features of leaves, achieving significantly greater total contact area between the oil droplets and the leaves. The second nano-formulation was solid-state based, focused on locating the active ingredient within the tubules of a nanotube clay. For proof-of-concept two synthetic plant hormones, N-phenyl-N‘-(2-chloro-4-pyridyl)urea (CPPU) or forchlorfenuron, a synthetic cytokinin, and 2,4-dichlorophenoxyacetic acid (2,4-D), a synthetic auxin, were chosen for encapsulation. CPPU is a phenylurea derivative that shows strikingly strong cytokinin-like activity in plants, including delaying senescence. It is highly water insoluble, but soluble in organic solvents. It is widely used in a variety of crops, particularly kiwifruit and table grapes. Delivery of CPPU safely, efficiently and at the appropriate dosage is a priority as overdosing or incorrect timing of application causes detrimental effects on fruit firmness and other quality attributes. Auxins are also a group of plant hormone. 2,4-D is a synthetic auxin which has been widely used at high concentrations as a herbicide, at medium concentrations for fruit thinning, and at low concentrations promotes root initiation, but at even lower concentrations promote root elongation. Consequently, careful control of dosage is required to obtain the desired effect. The nanoemulsion system developed was water/polysorbate 80/glycerol/soybean oil. The active ingredient, CPPU, was incorporated into the nanoemulsion via the oil phase in a pre-concentrate which was then crash diluted to yield the final nanoemulsion. Nanoemulsions are created only when the concentrate is located in the bicontinuous or oil-in-water microemulsion regions of the phase diagram. The droplet size of the nanoemulsions was measured using dynamic light scattering with droplets ranging in size from 30 – 100 nm. The CPPU-loaded nanoemulsions were stable for more than three days. To determine if the nanoemulsion was an effective delivery system, a leaf senescence bioassay was conducted to test the senescence-delaying effect of the CPPU-loaded nanoemulsions when applied to explants. The nanoemulsions were applied directly to the leaves of dwarf bean explants. Chlorophyll was extracted from the leaves and measured spectrophotometrically before and several days following treatment. The CPPU-loaded nanoemulsions enhanced the effectiveness of CPPU in delaying leaf senescence compared with the control experiments, including direct application of CPPU. A >10-fold reduction in CPPU concentration was achieved. The second delivery method was a solid-state preparation, using halloysite clay nanotubes loaded with 2,4-D. A rooting bioassay using mung bean explants was used for proof of concept. Application of 2,4-D nanotubes to the cut end of a young stem, without roots, stimulated root formation compared to controls after 10 days and at a lower applied concentration. The retardation of root elongation, relative to controls after 13 days, potentially indicated continued slow release of the active ingredient from the nanotubes. Results obtained from this research indicate that nano-formulations have the potential to deliver biologically active compounds to plants in the horticultural and agricultural sectors at effective concentrations lower than in current usage.</p>


2014 ◽  
Vol 70 (3) ◽  
pp. 250-255 ◽  
Author(s):  
Alice K. Hui ◽  
Chun-Hsing Chen ◽  
Adam M. Terwilliger ◽  
Richard L. Lord ◽  
Kenneth G. Caulton

Reaction of a bis-tetrazinyl pyridine pincer ligand, btzp, with a vanadium(III) reagent gives not a simple adduct but dichlorido{3-methyl-6-[6-(6-methyl-1,2,4,5-tetrazin-3-yl-κN2)pyridin-2-yl-κN]-1,4-dihydro-1,2,4,5-tetrazin-1-yl-κN1}oxidovanadium(IV) acetonitrile 2.5-solvate, [V(C11H10N9)Cl2O]·2.5CH3CN, a species which X-ray diffraction reveals to have one H atom added to one of the two tetrazinyl rings. This H atom was first revealed by a short intermolecular N...Cl contact in the unit cell and subsequently established, from difference maps, to be associated with a hydrogen bond. One chloride ligand has also been replaced by an oxide ligand in this synthetic reaction. This formula for the complex, [V(Hbtzp)Cl2O], leaves open the question of both ligand oxidation state and spin state. A computational study of all isomeric locations of the H atom shows the similarity of their energies, which is subject to perturbation by intermolecular hydrogen bonding found in X-ray work on the solid state. These density functional calculations reveal that the isomer with the H atom located as found in the solid state contains a neutral radical Hbtzp ligand and tetravalentd1V center, but that these two unpaired electrons are more stable as an open-shell singlet and hence antiferromagnetically coupled.


2020 ◽  
Vol 117 (14) ◽  
pp. 7658-7664 ◽  
Author(s):  
Wilhelm Johannisson ◽  
Ross Harnden ◽  
Dan Zenkert ◽  
Göran Lindbergh

Structures that are capable of changing shape can increase efficiency in many applications, but are often heavy and maintenance intensive. To reduce the mass and mechanical complexity solid-state morphing materials are desirable but are typically nonstructural and problematic to control. Here we present an electrically controlled solid-state morphing composite material that is lightweight and has a stiffness higher than aluminum. It is capable of producing large deformations and holding them with no additional power, albeit at low rates. The material is manufactured from commercial carbon fibers and a structural battery electrolyte, and uses lithium-ion insertion to produce shape changes at low voltages. A proof-of-concept material in a cantilever setup is used to show morphing, and analytical modeling shows good correlation with experimental observations. The concept presented shows considerable promise and paves the way for stiff, solid-state morphing materials.


Author(s):  
Ommid Anamimoghadam ◽  
Leighton O. Jones ◽  
James A. Cooper ◽  
Yassine Beldjoudi ◽  
Minh T. Nguyen ◽  
...  

2019 ◽  
Vol 91 (9) ◽  
pp. 1471-1478 ◽  
Author(s):  
Francesco Papi ◽  
Giulia Targetti ◽  
Linda Cerofolini ◽  
Claudio Luchinat ◽  
Marco Fragai ◽  
...  

Abstract The fully characterization of tumor associated antigens (TAAs) and of tumor associated carbohydrate antigens (TACAs) have opened the avenue of cancer immunotherapy. The intrinsic poor immunogenicity of TACAs, however, spotlighted the importance of multivalent presentation of the antigen(s) to trigger an immune response. Nanoparticles are excellent scaffolds for this purpose. Here we reported on the easy glycosylation of iron-based and biocompatible dextran-based nanoparticles with 1, a mimetic of the TnThr antigen. The multivalent presentation of 1 induced the induction of TNF-α and IL-6/IL10, respectively. The multivalent glycosylation of silica nanoparticles (GSiNPs) was also performed and saccharide loading qualitative assessed by solid state NMR. Our results offer the proof of concept that biomolecules coating can also be investigated on solid system by NMR.


Sign in / Sign up

Export Citation Format

Share Document