scholarly journals Inverse Material Search and Synthesis Verification by Hand Drawings via Transfer Learning and Contour Detection

Author(s):  
Nikita Serov ◽  
Vladimir Vinogradov

Nanomaterials of various morphologies and chemistry have an extensive use <a>as photonic devices, advanced catalysts, sorbents for water purification, agrochemicals, platforms for drug delivery</a> as well as imaging systems to name a few. However, search for synthesis routes giving custom nanomaterials for particular needs with the desired structure, shape, and size remains a challenge and is often implemented by manual research articles screening. Here, we develop for the first time scanning and transmission electron microscopy (SEM/TEM) reverse image search and hand drawing-based search <i>via</i> transfer learning (TL), namely, VGG16 convolutional neural network (CNN) repurposing for image features extraction and subsequent image similarity determination. Moreover, we demonstrate case use of this platform on calcium carbonate system, where sufficient amount of data was acquired by random high throughput multiparametric synthesis, as well as on Au nanoparticles (NPs) data extracted from the articles. This approach can be not only used for advanced nanomaterials search and synthesis procedure verification, but also can be further combined with machine learning (ML) solutions to provide data-driven novel nanomaterials discovery.

2021 ◽  
Author(s):  
Nikita Serov ◽  
Vladimir Vinogradov

Nanomaterials of various morphologies and chemistry have an extensive use <a>as photonic devices, advanced catalysts, sorbents for water purification, agrochemicals, platforms for drug delivery</a> as well as imaging systems to name a few. However, search for synthesis routes giving custom nanomaterials for particular needs with the desired structure, shape, and size remains a challenge and is often implemented by manual research articles screening. Here, we develop for the first time scanning and transmission electron microscopy (SEM/TEM) reverse image search and hand drawing-based search <i>via</i> transfer learning (TL), namely, VGG16 convolutional neural network (CNN) repurposing for image features extraction and subsequent image similarity determination. Moreover, we demonstrate case use of this platform on calcium carbonate system, where sufficient amount of data was acquired by random high throughput multiparametric synthesis, as well as on Au nanoparticles (NPs) data extracted from the articles. This approach can be not only used for advanced nanomaterials search and synthesis procedure verification, but also can be further combined with machine learning (ML) solutions to provide data-driven novel nanomaterials discovery.


NANO ◽  
2013 ◽  
Vol 08 (05) ◽  
pp. 1350052 ◽  
Author(s):  
BIN ZENG ◽  
XIAOHUA CHEN ◽  
XUTAO NING ◽  
CHUANSHENG CHEN ◽  
HUI LONG

Novel flower-like composite architecture was successfully synthesized by spray drying and post-calcinating method for the first time. Scanning electron microscopy and transmission electron microscopy observations confirmed that reduced graphene oxides/carbon nanotubes hybrid (rGO/CNTs) formed a flower-like micrometer structure and Cu2O , CuO ( Cu x O , x = 1 or 2) nanoparticles were decorated inside them. The photocatalytic properties were further investigated by evaluating the photodegradation of a pollutant methyl orange (MO). The experimental results indicated that this novel architecture enhanced photocatalytic performance with 96.2% decomposition of MO after 25 min in the presence of H 2 O 2 under visible light irradiation, which was much higher than that of Cu x O powders (33.2%). This could be attributed to the more efficient adsorption of MO molecules on flower-like rGO/CNTs and provide a high concentration of MO near to the Cu x O nanoparticles, thus promoting the photocatalytic degradation process.


Botany ◽  
2009 ◽  
Vol 87 (9) ◽  
pp. 854-863 ◽  
Author(s):  
Georges Barale ◽  
Gaëtan Guignard ◽  
Marion K. Bamford

Isolated ovules from the Upper Triassic of Zimbabwe were observed using three complementary approaches: light microscopy and, for the first time, scanning electron microscopy and transmission electron microscopy. Complete ovules showed a curved bifid micropylar tube. Three envelopes were present: integument, nucellus, and megaspore. The integument appeared resiniferous. The nucellus was made up of bulging cells around the pollen chamber, which contained bisaccate pollen grains. The ultrastructure of the nucellus revealed a lamellar organization in their microsinuosities. The megaspore membrane was made up of agglomerate rounded bodies more or less closely arranged and surrounded by two layers. The material may be attributed to Umkomasiaceae. A comparison with ovules of different related groups (seed ferns, Caytoniales, Ginkgoales, Nilssoniales, and Coniferales) was made. The Umkomasiales are considered to be a more primitive group than the Pteridospermales with regard to integument and nucellus.


Author(s):  
J.R. Parsons ◽  
C.W. Hoelke

The direct imaging of a crystal lattice has intrigued electron microscopists for many years. What is of interest, of course, is the way in which defects perturb their atomic regularity. There are problems, however, when one wishes to relate aperiodic image features to structural aspects of crystalline defects. If the defect is inclined to the foil plane and if, as is the case with present 100 kV transmission electron microscopes, the objective lens is not perfect, then terminating fringes and fringe bending seen in the image cannot be related in a simple way to lattice plane geometry in the specimen (1).The purpose of the present work was to devise an experimental test which could be used to confirm, or not, the existence of a one-to-one correspondence between lattice image and specimen structure over the desired range of specimen spacings. Through a study of computed images the following test emerged.


Author(s):  
Z.L. Wang ◽  
J. Bentley ◽  
R.E. Clausing ◽  
L. Heatherly ◽  
L.L. Horton

Microstructural studies by transmission electron microscopy (TEM) of diamond films grown by chemical vapor deposition (CVD) usually involve tedious specimen preparation. This process has been avoided with a technique that is described in this paper. For the first time, thick as-grown diamond films have been examined directly in a conventional TEM without thinning. With this technique, the important microstructures near the growth surface have been characterized. An as-grown diamond film was fractured on a plane containing the growth direction. It took about 5 min to prepare a sample. For TEM examination, the film was tilted about 30-45° (see Fig. 1). Microstructures of the diamond grains on the top edge of the growth face can be characterized directly by transmitted electron bright-field (BF) and dark-field (DF) images and diffraction patterns.


Author(s):  
J. T. Sizemore ◽  
D. G. Schlom ◽  
Z. J. Chen ◽  
J. N. Eckstein ◽  
I. Bozovic ◽  
...  

Investigators observe large critical currents for superconducting thin films deposited epitaxially on single crystal substrates. The orientation of these films is often characterized by specifying the unit cell axis that is perpendicular to the substrate. This omits specifying the orientation of the other unit cell axes and grain boundary angles between grains of the thin film. Misorientation between grains of YBa2Cu3O7−δ decreases the critical current, even in those films that are c axis oriented. We presume that these results are similar for bismuth based superconductors and report the epitaxial orientations and textures observed in such films.Thin films of nominally Bi2Sr2CaCu2Ox were deposited on MgO using molecular beam epitaxy (MBE). These films were in situ grown (during growth oxygen was incorporated and the films were not oxygen post-annealed) and shuttering was used to encourage c axis growth. Other papers report the details of the synthesis procedure. The films were characterized using x-ray diffraction (XRD) and transmission electron microscopy (TEM).


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Celia Marcos ◽  
María de Uribe-Zorita ◽  
Pedro Álvarez-Lloret ◽  
Alaa Adawy ◽  
Patricia Fernández ◽  
...  

Chert samples from different coastal and inland outcrops in the Eastern Asturias (Spain) were mineralogically investigated for the first time for archaeological purposes. X-ray diffraction, X-ray fluorescence, transmission electron microscopy, infrared and Raman spectroscopy and total organic carbon techniques were used. The low content of moganite, since its detection by X-ray diffraction is practically imperceptible, and the crystallite size (over 1000 Å) of the quartz in these cherts would be indicative of its maturity and could potentially be used for dating chert-tools recovered from archaeological sites. Also, this information can constitute essential data to differentiate the cherts and compare them with those used in archaeological tools. However, neither composition nor crystallite size would allow distinguishing between coastal and inland chert outcrops belonging to the same geological formations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Denis V. Novitsky ◽  
Dmitry Lyakhov ◽  
Dominik Michels ◽  
Dmitrii Redka ◽  
Alexander A. Pavlov ◽  
...  

AbstractUnique and flexible properties of non-Hermitian photonic systems attract ever-increasing attention via delivering a whole bunch of novel optical effects and allowing for efficient tuning light-matter interactions on nano- and microscales. Together with an increasing demand for the fast and spatially compact methods of light governing, this peculiar approach paves a broad avenue to novel optical applications. Here, unifying the approaches of disordered metamaterials and non-Hermitian photonics, we propose a conceptually new and simple architecture driven by disordered loss-gain multilayers and, therefore, providing a powerful tool to control both the passage time and the wave-front shape of incident light with different switching times. For the first time we show the possibility to switch on and off kink formation by changing the level of disorder in the case of adiabatically raising wave fronts. At the same time, we deliver flexible tuning of the output intensity by using the nonlinear effect of loss and gain saturation. Since the disorder strength in our system can be conveniently controlled with the power of the external pump, our approach can be considered as a basis for different active photonic devices.


2020 ◽  
Vol 9 (1) ◽  
pp. 416-428 ◽  
Author(s):  
Raghad R. Alzahrani ◽  
Manal M. Alkhulaifi ◽  
Nouf M. Al-Enazi

AbstractThe adaptive nature of algae results in producing unique chemical components that are gaining attention due to their efficiency in many fields and abundance. In this study, we screened the phytochemicals from the brown alga Hydroclathrus clathratus and tested its ability to produce silver nanoparticles (AgNPs) extracellularly for the first time. Lastly, we investigated its biological activity against a variety of bacteria. The biosynthesized nanoparticles were characterized by UV-visible spectroscopy, Fourier-transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and energy-dispersive spectroscopy. The biological efficacy of AgNPs was tested against eighteen different bacteria, including seven multidrug-resistant bacteria. Phytochemical screening of the alga revealed the presence of saturated and unsaturated fatty acids, sugars, carboxylic acid derivatives, triterpenoids, steroids, and other components. Formed AgNPs were stable and ranged in size between 7 and 83 nm and presented a variety of shapes. Acinetobacter baumannii, Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), and MDR A. baumannii were the most affected among the bacteria. The biofilm formation and development assay presented a noteworthy activity against MRSA, with an inhibition percentage of 99%. Acknowledging the future of nano-antibiotics encourages scientists to explore and enhance their potency, notably if they were obtained using green, rapid, and efficient methods.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2623
Author(s):  
Monika Wójcik-Bania ◽  
Jakub Matusik

Polymer–clay mineral composites are an important class of materials with various applications in the industry. Despite interesting properties of polysiloxanes, such matrices were rarely used in combination with clay minerals. Thus, for the first time, a systematic study was designed to investigate the cross-linking efficiency of polysiloxane networks in the presence of 2 wt % of organo-montmorillonite. Montmorillonite (Mt) was intercalated with six quaternary ammonium salts of the cation structure [(CH3)2R’NR]+, where R = C12, C14, C16, and R’ = methyl or benzyl substituent. The intercalation efficiency was examined by X-ray diffraction, CHN elemental analysis, and Fourier transform infrared (FTIR) spectroscopy. Textural studies have shown that the application of freezing in liquid nitrogen and freeze-drying after the intercalation increases the specific surface area and the total pore volume of organo-Mt. The polymer matrix was a poly(methylhydrosiloxane) cross-linked with two linear vinylsiloxanes of different siloxane chain lengths between end functional groups. X-ray diffraction and transmission electron microscopy studies have shown that the increase in d-spacing of organo-Mt and the benzyl substituent influence the degree of nanofillers’ exfoliation in the nanocomposites. The increase in the degree of organo-Mt exfoliation reduces the efficiency of hydrosilylation reaction monitored by FTIR. This was due to physical hindrance induced by exfoliated Mt particles.


Sign in / Sign up

Export Citation Format

Share Document