scholarly journals Pottery of the Nabil Archaeological Culture from Sakhalin Island

Author(s):  
P. A. Pashentsev ◽  
◽  

The article considers the results of multidisciplinary analysis of the Nabil archaeological culture pottery identified in 2005 by results of the archaeological researches in North Sakhalin. The Nabil archaeological culture includes the ceramics complex consisted of pointed shape pottery decorated by comb stamps. The sources of the study are the archaeological studies of the settlements (the collections and reports) organized by the research team of Sakhalin Archaeological and Ethnography Laboratory of IAET SB RAS and SakhGU in 2004–2015 and additional archaeological material from other collections. According to absolute dating of the Nabil archaeological complexes, the material was clustered into three chronological periods: early – 3065–2781 cal BP, middle – 2754–2342 cal BP, late – 2334–2009 cal BP. The study used technical methods like X-ray Diffraction analysis, Petrographic analysis of pottery, Optical Binocular Microscopy, method of sherds’ laboratory re-firing, statistic-and-classification method. Most part of the pottery was identified as the remains of the everyday utensils, the lowest rate of the others were used like celebratory vessels. Recipes of the moulding compounds are almost homogeneous. Their raw material includes meagre clay with a lot of dust-like natural sand. As a thinning agent for the moulding composition added sand temper in pottery paste and sometimes chamotte. The vessels were made by the wall only “seedbody”. The walls of the vessels formed by the linear-ring building method. The pottery was roasted with bonfire firing, the later period with oven devices for pottery firing. The vessel's shapes are asymmetry. The contour of the vessel shape of the Nabil’s type is oval-shaped with either concave or straight or ill-defined neck. The upper part of the vessel surface was decorated. The basic type of ornamentation is the comb stamps. The elements of the pottery ornamentation are both continuous and discrete horizontal lines, curved ornament, short, long, diagonal, and vertical lines as well as individual impressions. The pattern of the pottery decoration consists of either horizontal continuous lines or discrete ones with either series diagonal or vertical short stamping. It is widespread. Stylistically the composition of the pottery decoration evokes associations with the row of the beads and pendants. In conjunction with nipple-shaped thickened of the vessel to the bottom it creates a stylistic image of the female breast. There was the infiltration of foreign cultural elements in the Nabil archaeological culture in the late period.

2018 ◽  
Vol 56 ◽  
pp. 23-33
Author(s):  
Mar Rey-Solé ◽  
Maria Pilar García-Argüelles ◽  
Jordi Nadal ◽  
Xavier Mangado ◽  
Anders Scherstén ◽  
...  

The l’Hort de la Boquera site is located in the northeastern part of Iberia and its stone tool assemblage includes up to 25,000 flint artefacts. This is the first approach to the analysis of the raw material through an archaeopetrological study. Results were obtained by use of mineralogi¬cal techniques: macroscopic and petrographic analysis, Scanning Electronic Microscopy (SEM), Micro-Raman and X-Ray diffraction (XRD); additionally, Laser Ablation Inductively Coupled Plasma Mass Spectrometry was applied. It has been possible to discriminate at least four flint categories, the ‘Evaporitic flint type’ (with two local subvarieties – ‘Common evaporitic’ and ‘Garnet’ varieties) that comes from local outcrops of the Ulldemolins Complex, and two flint types that had their origin further afield: the ‘Charophyta flint type’ (coming from the Torrente de Cinca Unit) and the ‘Dark flint type’ (from the La Serra Llarga Formation).These results make this study the most comprehensive analysis of raw materials that has been carried out in the area so far


2017 ◽  
Vol 6 (3) ◽  
pp. 216-222
Author(s):  
Irina Victorovna Shevnina ◽  
Tatyana Nikolaevna Loshakova

The research is devoted to the studies of raw materials and molding masses of ceramic products from the settlement Toksanbay. The purpose of the research was to study the technological aspects taking place in the course of ceramic vessels production, as well as in-depth study of the raw materials and molding masses of pottery ceramics of the settlement. During the research of samples, in addition to petrographic analysis, fragments of ceramics were studied using the binocular microscopy method, chemical experiments were carried out (using a micromethod) with the use of ammonium molybdenum, hydrochloric acid, and microenacts were checked for iron in the composition of the crock. The received result revealed that as the raw material ferruginous clay was used, and the chemical reaction to Fe of all fragments turned out to be positive. The original clay contains sand, besides this, sand feldspars, fragments of sandstones, silicified schists and epidote are noted in the sand composition. Three recipes of molding masses were revealed. The organics is stated in the form of silicified voids. The composition of organic matter showed carbonate-siliceous or carbonate-phosphate. The microreaction analysis using ammonium molybdenum (МоН4)2АmО4 determined the presence of a phosphate type in organic samples. From the organic fillers, a part of the studied samples revealed hollows of round and oval shape from the burnt organics. The study of the pottery of the settlement will be continued but it can be argued that the Toksanbay potters used local clay, and the most common impurity was organogenic limestone.


2020 ◽  
Vol 849 ◽  
pp. 113-118
Author(s):  
Yayat Iman Supriyatna ◽  
Slamet Sumardi ◽  
Widi Astuti ◽  
Athessia N. Nainggolan ◽  
Ajeng W. Ismail ◽  
...  

The purpose of this study is to characterize Lampung iron sand and to conduct preliminary experiments on the TiO2 synthesis which can be used for the manufacturing of functional food packaging. The iron sand from South Lampung Regency, Lampung Province that will be utilized as raw material. The experiment was initiated by sieving the iron sand on 80, 100, 150, 200 and 325 mesh sieves. Analysis using X-Ray Fluorescence (XRF) to determine the element content and X-Ray Diffraction (XRD) to observe the mineralization of the iron sand was conducted. The experiment was carried out through the stages of leaching, precipitation, and calcination. Roasting was applied firstly by putting the iron sand into the muffle furnace for 5 hours at a temperature of 700°C. Followed by leaching using HCl for 48 hours and heated at 105°C with a stirring speed of 300 rpm. The leaching solution was filtered with filtrate and solid residue as products. The solid residue was then leached using 10% H2O2 solution. The leached filtrate was heated at 105°C for 40 minutes resulting TiO2 precipitates (powder). Further, the powder was calcined and characterized. Characterization of raw material using XRF shows the major elements of Fe, Ti, Mg, Si, Al and Ca. The highest Ti content is found in mesh 200 with 9.6%, while iron content is about 80.7%. While from the XRD analysis, it shows five mineral types namely magnetite (Fe3O4), Rhodonite (Mn, Fe, Mg, Ca) SiO3, Quart (SiO2), Ilmenite (FeOTiO2) and Rutile (TiO2). The preliminary experiment showed that the Ti content in the synthesized TiO2 powder is 21.2%. The purity of TiO2 is low due to the presence of Fe metal which is dissolved during leaching, so that prior to precipitation purification is needed to remove impurities such as iron and other metals.


Author(s):  
F. Mostefa ◽  
Nasr Eddine Bouhamou ◽  
H.A. Mesbah ◽  
Salima Aggoun ◽  
D. Mekhatria

This work aims to study the feasibility of making a geopolymer cement based on dredged sediments, from the Fergoug dam (Algeria) and to evaluate their construction potential particularly interesting in the field of special cementitious materials. These sediments due to their mineralogical composition as aluminosilicates; are materials that can be used after heat treatment. Sedimentary clays were characterized before and after calcination by X-ray diffraction, ATG / ATD, spectroscopy (FTIR) and XRF analysis. The calcination was carried out on the raw material sieved at 80 μm for a temperature of 750 ° C, for 3.4 and 5 hours. The reactivity of the calcined products was measured using isothermal calorimetric analysis (DSC) on pastes prepared by mixing an alkaline solution of sodium hydroxide (NaOH) 8 M in an amount allowing to have a Na / Al ratio close to 1 (1: 1). Also, cubic mortar samples were prepared with a ratio L / S: 0.8, sealed and cured for 24 hours at 60 ° C and then at room temperature until the day they were submited to mechanical testing. to check the extent of geopolymerization. The results obtained allowed to optimize the calcination time of 5 hours for a better reactivity of these sediments, and a concentration of 8M of sodium hydroxide and more suitable to have the best mechanical performances.


2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


2012 ◽  
Vol 454 ◽  
pp. 324-328
Author(s):  
Yan He ◽  
Ya Jing Liu ◽  
Yong Lin Cao ◽  
Li Xia Zhou

Infra-red absorption spectrometry, X-ray diffraction observations and characterization tests based on silicon molybdenum colorimetric method were used to investigate the optimal pH value controlling the stability of the silicic acid form. The experiment process was done by using sodium silicate as raw material. The results showed that the solution of silicate influenced the polymerization. The active silicic acid solution with a certain degree of polymerization was obtained by controlling the pH values.


2011 ◽  
Vol 306-307 ◽  
pp. 961-965
Author(s):  
Chao Nan Yin ◽  
Ling Chao Lu ◽  
Shou De Wang

The influence of P2O5on the properties of alite-calcium strontium sulphoaluminate cement was researched by means of X-ray diffraction, scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) and petrographic analysis. The results show that the optimal content of P2O5is 0.3% and the compressive strength of the cement at 1, 3, 28d are 27.0, 59.1, 110.9MPa when the calcining temperature is 1350°C. P2O5mainly exists in the belite and a suitable amount of P2O5can promote the formation of C1.5Sr2.5A3and alite. When the content of P2O5is higher than 0.3%, the formation of C1.5Sr2.5A3and alite can be hindered. P2O5can enhance the hydration heat evolution rate in the acceleration period and the hydrate heat of cement containing P2O5increases slightly.


2012 ◽  
Vol 620 ◽  
pp. 384-388
Author(s):  
Sharifah Aishah Syed Salim ◽  
Julie Juliewatty Mohamed ◽  
Zainal Arifin Ahmad ◽  
Zainal Arifin Ahmad

Numerous methods have been used to produce high purity TiC. There is no previous study has been reported on the formation using single elemental powders of Titanium (Ti) and Carbon (C) with addition Nickel (Ni) by tungsten inert gas (TIG) weld method. In this work, TiC was synthesized via TIG method by arc melting elemental powder mixture of Ti and C at ~5 second (s) and 80 ampere (A). The effect Ni contents on TiC formation was investigated. The mixed raw material was ball milled for 24 hours followed by synthesis via TIG method. The arced samples were characterized by X-ray diffraction (XRD) and Scanning electron microscope (SEM). It was revealed, that small amount of Ni additive to the metal powder allows the production of dense and tough TiC.


2013 ◽  
Vol 829 ◽  
pp. 294-298 ◽  
Author(s):  
Mehrdad Rashidzadeh

High purity Cadmium (Cd) metal was used as raw material and placed in a microwave susceptor. an evaporation/oxidation process occurs under exposure to microwave in less than 2 minutes. Then, Evaporated cadmium reacted with oxygen and cadmium oxide was collected on the inner surface of a glassy container that was placed a few centimeters above the susceptor. Morphological and structural information of As-synthesized CdO nanopowder, were investigated via SEM and X-ray diffraction (XRD) spectroscopy. The antibacterial activities of different concentration of the CdO nanoparticles were tested by treating Escherichia coli (Gram negative) cultures with CdO nanoparticles. The Study indicates that cadmium oxide nanoparticles show effective antibacterial activity toward the gram-negative bacterium E. coli. Electrochemical properties of as-synthesized powder were investigated via linear and two vertex cyclic voltammetery in the presence of ethanol, a pair of Oxidation/reduction peaks were achieved.


2014 ◽  
Vol 1056 ◽  
pp. 12-15 ◽  
Author(s):  
Wen Long Zhang ◽  
Wen Long Zhao ◽  
Ya Jie Dai

Reed Pulp was Raw Material that Pretreated by Four Methods {ultrasonic, Microwave, N, N-Dimethyl Acetamide (DMAc) and Tetrahydrofuran (THF)}. Reed Microcrystalline Cellulose (MCC) was Prepared by the Dilute Hydrochloric Acid Hydrolysis from Pretreated Reed Pulp. the Influences of Pretreatment Methods on Crystalline Type, Crystallinity and Crystallite Size of MCC were Investigated by X-Ray Diffraction (XRD). the Results Showed that the Crystallinity of MCC with Four Pretreatment Methods was 68.45%, 62.28%, 63.21% and 69.56%, Respectively. the Average Crystallite Size of MCC Prepared by Hydrolysis after Pretreated by Dmac was the Largest. whereas, the Crystal Type of MCC was Not Changed, it was still the Cellulose Type I. Comprehensive Analysis Indicated that the Effects of MCC Prepared by Hydrolysis after Pretreated by Ultrasonic were the Best.


Sign in / Sign up

Export Citation Format

Share Document