scholarly journals Simulation of a Dummy Crash Test in ADAMS

Author(s):  
Marek Jaśkiewicz ◽  
Damian Frej ◽  
Miloš Poliak

The article presents a model designed dummy for crash test in ADAMS. The simulated model dummy has dimensions, shapes and mass corresponding to a 50-percentile man. The simulation program allows modification of the dummy parameters. It allows to study the dynamics of motion, distribution of forces and loads of individual parts of the body of the simulated model. The article describes the design process and how to select the appropriate stiffness and damping joints for the simulated dummy. The article contains the results of simulation crash tests performed in the ADAMS program, which were compared to results of the Hybryd III dummy physical crash test. The simulation is designed to reflect the greatest compliance of the movements of individual parts of the human body during the low speed collision.

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1476
Author(s):  
Marek Jaśkiewicz ◽  
Damian Frej ◽  
Jan Matej ◽  
Rafał Chaba

The article presents a model of an anthropometric dummy designed for low velocity crash tests, designed in ADAMS. The model consists of rigid bodies connected with special joints with appropriately selected stiffness and damping. The simulation dummy has the appropriate dimensions, shape, and mass of individual elements to suit a 50 percentile male. The purpose of this article is to draw attention to low speed crash tests. Current dummies such as THOR and Hybrid III are used for crash tests at speeds above 40 km/h. In contrast, the low-speed test dummy currently used is the BioRID-II dummy, which is mainly adapted to the whiplash test at speeds of up to 16km/h. Thus, it can be seen that there is a gap in the use of crash test dummies. There are no low-speed dummies for side and front crash tests, and there are no dummies for rear crash tests between 16 km/h and 25 km/h. Which corresponds to a collision of a passenger vehicle with a hard obstacle at a speed of 30 km/h. Therefore, in collisions with low speeds of 20 km/h, the splash airbag will probably not be activated. The article contains the results of a computer simulation at a speed of 20 km/h vehicle out in the ADAMS program. These results were compared with the experimental results of the laboratory crash test using volunteers and the Hybrid III dummy. The simulation results are the basis for building the physical model dummy. The simulation aims to reflect the greatest possible compliance of the movements of individual parts of the human body during a collision at low speed.


Author(s):  
Francesco Braghin ◽  
Paolo Pennacchi ◽  
Edoardo Sabbioni

The dynamic behavior of the human body during race car maneuvers and frontal crash tests is analyzed in this paper. Both the vehicle and the human body have been modeled using the multi-body approach. Two commercial codes, BRG LifeMOD Biomechanics Modeler®, for the simulation of the human body dynamics, and MSC ADAMS/Car® for the modeling of the vehicle behavior, have been used for the purpose. Due to the impossibility of co-simulating, at first the accelerations on the driver’s chassis are determined using the vehicle’s multibody code and approximating the driver as a rigid body. Then, the calculated accelerations are applied to the vehicle chassis in the biomechanics code to assess the accelerations in various significant points on the driver.


2019 ◽  
Vol 24 (3) ◽  
pp. 592-599
Author(s):  
Hamid Gheibollahi ◽  
Masoud Masih-Tehrani ◽  
Mohammadmehdi Niroobakhsh

In this study, adding a headrest to the conventional vehicle driver seat is investigated to improve the driver comfort and decrease the driver damages. For this purpose, a conventional biomechanical human body model of wholebody vibrations is provided and modified by adding a head degree of freedom to the body model and a headrest to the seat model. The basic model is in the sitting posture, lumped parameters and has nine DOFs for the human body, on contrary to the proposed model which has ten DOFs. The new human body DOF is the twisting motion of the head and neck. This new DOF is generated because of headrest adding to the driver’s seat. To determine the head discomforts, the Seat to Head (STH) indexes are studied in two directions: horizontal and vertical. The Genetic Algorithm (GA) is used to optimize the STH in different directions. The optimization variables are stiffness and damping parameters of the driver’s seat which are 12 for the basic model and are 16 for a new seat. The integer programming is used for time reduction. The results show that new seat (equipped by headrest) has very better STH in both directions.


2020 ◽  
Vol 14 ◽  

The aim of the study was to research the behavior of the rubber-metal body mounting under various modeling options and to select the optimal, from the point of view of ensuring the accuracy of the results in the crash tests simulations. Body supports provide a link between the body and the car frame, and this has a critical effect on the impact test results of the car. The article discusses various options for modeling the body mounting by the degree of simplification from the simplest model with a rigid connection between the body and the frame to the model that takes into account the non-linearity of the stiffness characteristics of the supports, contact interaction between parts of the mounting and its surrounding parts, tension of the supports and failure. The results of virtual tests of a car with various options for modeling mountings were compared with the results of real tests. As a result of the study, a methodology for modeling the body supports was developed, which allows providing the necessary measurement error in virtual crash test modeling.


2011 ◽  
Vol 145 ◽  
pp. 384-389
Author(s):  
Seong Hyun Kim ◽  
Dong Wook Kim

With modern society entering an aging society, revitalizing elderly people's social activities and thus increasing their fall injuries leading to the fracture of various parts of the body, this study sought to examine shock amount generated when elderly people fall in diverse directions and hit the ground in a bid to develop a system aimed at minimizing shocks and preventing bone fractures. Existing studies dealt with young subjects sustaining fall injuries because a more number of elderly people suffer them, compared with young people, making it hard to obtain fall injuries data of elderly people. Thus, in this study, a system enabling a rapid movement and fall induction was used so as to simulate forced falls, and various joint movements during falls were measured using a 3-D human body movement analysis system. Young subjects participated in actual forced fall experiments, due to their safety, and their body movement data were input onto the human body movement simulation program so as to simulate falls, and resulting shock amounts were measured. Dynamic elements occurring during falls in various parts of the body, such as displacement, speed and acceleration, were input into the various parts of the body of elderly people models which were incorporated into the simulation program, and falls were simulated so as to calculate shock amounts generated when elderly people fall and hit the ground. Also, herein proposed was a system designed to reduce fall shock amounts with the aim of preventing bone fractures, using carbon dioxide gas, solenoid valves, air bag systems. This shock reduction system is believed to be used in the bone fracture prevention system that we are keeping researching on.


Author(s):  
John A. DOnofrio

A Low Speed Collision Is Defined, For The Purpose Of This Paper, As A Collision Between Two Vehicles That Produces No Permanent Damage To The Body Of The Vehicle Except To The Bumper System. The Vehicles Are Equipped With Energy Absorbing Bumpers That Are Rated To A Particular Speed. The Collisions Are, For All Intents And Purposes, In-Line In Nature (Collinear) And Without Post-Impact Rotation. This Definition, While Quite Specific, Covers A Large Number Of Collisions. They Are The Typical Stop Sign, Waiting In Traffic, Parking Lot Type Crash. In The Following Sections I Will Examine How These Vehicles Interact And Respond To Such Collisions By Applying Newtons Laws And The Data From Vehicle Crash Tests. Presented Is Methodology For Reconstructing The Pre-Impact And Post-Impact Speed Of Such Collisions Using The Following Protocol: 1. Compute The Kinetic Energy Dissipated In The Collision From The Characteristics Of The Vehicles And Their Bumpers As Revealed In Crash Tests. 2. Use Conservation Of Energy And Damage Relationships To Determine The Pre-Collision Kinetic Energy And Closing Speed Of The Two-Vehicle System. 3. Use Conservation Of Linear Momentum To Calculate The Post-Collision Speed And Delta-V Of The Two Vehicles. This Method Uses The Strict Application Of Newtons Laws And Treats Both Vehicles As A System.


2013 ◽  
Vol 430 ◽  
pp. 217-221
Author(s):  
Panaitescu Liess Radu

Many of the studies in the biomechanics of the human body made globally focused primarily on hand-arm. This segment of the human body is considered a "gateway" of vibrations to other parts of the body or to internal organs. A long-term exposure to these mechanical vibration (caused by vibrating hand equipment: drill, grinder, etc.) affects the soft tissues and may lead to a dangerous syndrome, that is particularly vibration white finger (VWF), which is narrowing of blood vessels, a phenomenon that in time and untreated can even cause gangrene. This article focuses on a dynamic model with three degrees of freedom of the human finger. Some dynamic characteristics, such as centre of gravity, stiffness and damping, using both a rigid body structure system and computer simulations can be determined after measuring the vibrations.


2019 ◽  
pp. 3-13
Author(s):  
Alexandru Cîtea ◽  
George-Sebastian Iacob

Posture is commonly perceived as the relationship between the segments of the human body upright. Certain parts of the body such as the cephalic extremity, neck, torso, upper and lower limbs are involved in the final posture of the body. Musculoskeletal instabilities and reduced postural control lead to the installation of nonstructural posture deviations in all 3 anatomical planes. When we talk about the sagittal plane, it was concluded that there are 4 main types of posture deviation: hyperlordotic posture, kyphotic posture, rectitude and "sway-back" posture.Pilates method has become in the last decade a much more popular formof exercise used in rehabilitation. The Pilates method is frequently prescribed to people with low back pain due to their orientation on the stabilizing muscles of the pelvis. Pilates exercise is thus theorized to help reactivate the muscles and, by doingso, increases lumbar support, reduces pain, and improves body alignment.


Humaniora ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 83-90
Author(s):  
Anak Agung Ayu Wulandari ◽  
Ade Ariyani Sari Fajarwati

The research would look further at the representation of the human body in both Balinese and Javanese traditional houses and compared the function and meaning of each part. To achieve the research aim, which was to evaluate and compare the representation of the human body in Javanese and Balinese traditional houses, a qualitative method through literature and descriptive analysis study was conducted. A comparative study approach would be used with an in-depth comparative study. It would revealed not only the similarities but also the differences between both subjects. The research shows that both traditional houses represent the human body in their way. From the architectural drawing top to bottom, both houses show the same structure that is identical to the human body; head at the top, followed by the body, and feet at the bottom. However, the comparative study shows that each area represents a different meaning. The circulation of the house is also different, while the Balinese house is started with feet and continued to body and head area. Simultaneously, the Javanese house is started with the head, then continued to body, and feet area.


2021 ◽  
pp. 1354067X2110040
Author(s):  
Josefine Dilling ◽  
Anders Petersen

In this article, we argue that certain behaviour connected to the attempt to attain contemporary female body ideals in Denmark can be understood as an act of achievement and, thus, as an embodiment of the culture of achievement, as it is characterised in Præstationssamfundet, written by the Danish sociologist Anders Petersen (2016) Hans Reitzels Forlag . Arguing from cultural psychological and sociological standpoints, this article examines how the human body functions as a mediational tool in different ways from which the individual communicates both moral and aesthetic sociocultural ideals and values. Complex processes of embodiment, we argue, can be described with different levels of internalisation, externalisation and materialisation, where the body functions as a central mediator. Analysing the findings from a qualitative experimental study on contemporary body ideals carried out by the Danish psychologists Josefine Dilling and Maja Trillingsgaard, this article seeks to anchor such theoretical claims in central empirical findings. The main conclusions from the study are used to structure the article and build arguments on how expectations and ideals expressed in an achievement society become embodied.


Sign in / Sign up

Export Citation Format

Share Document