scholarly journals Oscilações Decadal e Dazonal das Temperaturas do Ar no Semiárido Nordestino (Oscillations Decadal and Seasonal of the Air Temperature in Northeast Semiarid)

2013 ◽  
Vol 6 (5) ◽  
pp. 1100
Author(s):  
Hermes Alves de Almeida

O objetivo deste trabalho foi analisar se as oscilações decadal e sazonal das temperaturas do ar (máxima, média e mínima) de Campina Grande e Areia (PB), Petrolina (PE) e Juazeiro (BA) são inerentes à variabilidade natural ou mudança climática. Para essas investigações foram utilizadas séries térmicas mensais e anuais, do período: 01.01.1970 a 31.12.2009, cedidas pelo INMET e Embrapa. Cada série foi analisada, estatisticamente, comparando-se a oscilação das temperaturas por décadas e nas estações do ano com as respectivas médias aritmética da série + o desvio padrão (DP). Os principais resultados mostraram aumentos nas temperaturas máxima, média e mínima, quando se compara a década com a anterior, em todas as estações do ano, mas inferiores as suas respectivas médias + DP. Os maiores valores médios mensais das séries das temperaturas máxima e mínima, ocorreram, respectivamente, em Juazeiro (BA) e Petrolina (PE), e os menores, em Areia (PB). Destaca-se, entretanto, que na última década foi constatada uma diminuição nas médias das temperaturas máxima e média, nas quatro estações do ano, em Campina Grande, PB, e nas média e mínima em Juazeiro, BA. Frequências de valores de temperaturas máxima e mínima anual acima das respectivas médias mais o desvio padrão foram verificados, respectivamente, em oito e em seis anos, em Juazeiro, BA. Como as dispersões térmicas, no período estudado, foram inferiores as respectivas médias mais o desvio padrão, conclui-se, que essas oscilações são inerentes a variabilidade natural do clima e não há indícios de mudanças climáticas.    A B S T R A C T This study aimed to examine whether the decadal oscillations and seasonal of air temperature maximum, means and minimum of Campina Grande and Areia (PB), Petrolina (PE) and Juazeiro (BA) are inherent to natural variability or climate change. For these investigations we used series monthly and yearly of extreme temperature of period: 01.01.1970 to 31.12.2009, granted by INMET and Embrapa. Each series was analyzed statistically comparing the fluctuation of temperatures for decades and in the seasons with their arithmetic mean of the series + the standard deviation (SD). The results showed increases in maximum, means and minimum temperatures, when compared with the previous decade, in all seasons of the year, but below their respective averages ± SD. The highest average monthly values of the series of maximum and minimum temperatures occurred respectively in Juazeiro (BA) and Petrolina (PE), and lowest in Areia (PB). It is noteworthy, however, that in the last decade we observed a decrease in the average maximum temperature in the four seasons in Campina Grande, PB, and minimal in Juazeiro, BA. Frequency values of maximum and minimum temperatures above their annual average plus the standard deviation were observed, respectively, eight and six years in Juazeiro, BA. As the thermal dispersions during the study period, were below their averages over the standard deviation, it is concluded that these oscillations are inherent to natural climate variability and there is evidence of climate change. Key-words: climate, climate variability, global warming, climate change  

Author(s):  
Kefyalew Alemayehu ◽  
Addis Getu

Summary Climate change affects the livestock populations. As temperature increases, the rainfall distribution patterns shifts. These indirectly change the ecosystems like changes in crop yield, alter the distribution of animal diseases, geographically restriction of rare breed populations and increased competition for resources. Therefore, the objective of the study was to quantify impacts of climate variability on livestock population dynamics and breed distribution patterns. The study was conducted in Gondar Zuria, Farta and Bahir Dar Zuria districts. The sites were selected based on agro-ecology and livestock distribution potential. Data were collected through desk reviews of different documents and studies, focused group discussions, key informants interviews and different projection models. The results revealed that 70 percent of respondents believed that the trends of livestock breed distribution varied from year to year and from agro-ecology to agro-ecology. The number of cattle and equines are decreasing from year to year due to climate variability. Particularly, the crossbred cattle population decreased in 1998, 2002 and 2008 due to shortage of rainfall, increments of temperature and feed shortage. A correlation analysis was used to quantify impacts of temperature and rainfall on livestock population dynamics and breed distribution. The analyses revealed that sheep (r = −0.535, P < 0.05) and cattle (r = −0. 512, P < 0.05) were negatively affected by climate variability. Whereas goats were having positive relationship (r = 0.345, P < 0.001). As the average maximum temperature steadily increases, the population dynamics of ruminant livestock fluctuated after the year 1996. About 92.2, 78 and 83.3 percent respondents in Farta, Gondar Zuria and Bahir Dar Zuria districts, respectively, stated that there is a fluctuation in amount of rainfall distribution during the main rainy seasons. About 84.5 percent of respondent of the three districts also believed that climate change made variation in rainfall distribution. About 52 percent of the respondents also suggested that if livestock is to be protected from climate change and related effects, changing the farming system with appropriate breed is important and can be achieved with the zero-grazing system. The farmers also recommended with stocking climate change adaptive and productive breeds. In conclusion, climate variability affected livestock population dynamics and breed distribution pattern negatively.


Author(s):  
Roshan Kumar Mehta ◽  
Shree Chandra Shah

The increase in the concentration of greenhouse gases (GHGs) in the atmosphere is widely believed to be causing climate change. It affects agriculture, forestry, human health, biodiversity, and snow cover and aquatic life. Changes in climatic factors like temperature, solar radiation and precipitation have potential to influence agrobiodiversity and its production. An average of 0.04°C/ year and 0.82 mm/year rise in annual average maximum temperature and precipitation respectively from 1975 to 2006 has been recorded in Nepal. Frequent droughts, rise in temperature, shortening of the monsoon season with high intensity rainfall, severe floods, landslides and mixed effects on agricultural biodiversity have been experienced in Nepal due to climatic changes. A survey done in the Chitwan District reveals that lowering of the groundwater table decreases production and that farmers are attracted to grow less water consuming crops during water scarce season. The groundwater table in the study area has lowered nearly one meter from that of 15 years ago as experienced by the farmers. Traditional varieties of rice have been replaced in the last 10 years by modern varieties, and by agricultural crops which demand more water for cultivation. The application of groundwater for irrigation has increased the cost of production and caused severe negative impacts on marginal crop production and agro-biodiversity. It is timely that suitable adaptive measures are identified in order to make Nepalese agriculture more resistant to the adverse impacts of climate change, especially those caused by erratic weather patterns such as the ones experienced recently.DOI: http://dx.doi.org/10.3126/hn.v11i1.7206 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.59-63


Climate ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 165
Author(s):  
Prem B. Parajuli ◽  
Avay Risal

This study evaluated changes in climatic variable impacts on hydrology and water quality in Big Sunflower River Watershed (BSRW), Mississippi. Site-specific future time-series precipitation, temperature, and solar radiation data were generated using a stochastic weather generator LARS-WG model. For the generation of climate scenarios, Representative Concentration Pathways (RCPs), 4.5 and 8.5 of Global Circulation Models (GCMs): Hadley Center Global Environmental Model (HadGEM) and EC-EARTH, for three (2021–2040, 2041–2060 and 2061–2080) future climate periods. Analysis of future climate data based on six ground weather stations located within BSRW showed that the minimum temperature ranged from 11.9 °C to 15.9 °C and the maximum temperature ranged from 23.2 °C to 28.3 °C. Similarly, the average daily rainfall ranged from 3.6 mm to 4.3 mm. Analysis of changes in monthly average maximum/minimum temperature showed that January had the maximum increment and July/August had a minimum increment in monthly average temperature. Similarly, maximum increase in monthly average rainfall was observed during May and maximum decrease was observed during September. The average monthly streamflow, sediment, TN, and TP loads under different climate scenarios varied significantly. The change in average TN and TP loads due to climate change were observed to be very high compared to the change in streamflow and sediment load. The monthly average nutrient load under two different RCP scenarios varied greatly from as low as 63% to as high as 184%, compared to the current monthly nutrient load. The change in hydrology and water quality was mainly attributed to changes in surface temperature, precipitation, and stream flow. This study can be useful in the development and implementation of climate change smart management of agricultural watersheds.


2019 ◽  
Author(s):  
Champak Bhakat

In order to decide the optimum time of grazing for camels during hot summer months, 10 growing camel calveswere divided into 2 equal groups. First group was sent for grazing during 10:00 h to 16:00 h daily and second groupallowed for grazing during thermo neutral period. The climatic variables were recorded daily (April 2012 to March2013). The average daily gain and total body weight gain in calves sent for grazing during relatively cool parts ofday (group 2) was significantly higher as compared to group 1 calves sent as per routine farm schedule. Theaverage intake of fodder and water from manger was higher in group 1 calves. The average DMI from manger forgroup 1 calves was higher as compared to group 2 calves. The comparative biometrics of camel calves in differentgrazing management practices revealed that body length, heart girth, height at wither, neck length were significantly(P<0.01) higher in group 2 calves as compared to group 1 calves. After 180 days of experimentation, humpcircumference vertical and hind leg length were significantly (P<0.05) increased in group 2 as compared to group1. Analysis of recorded data of climatic parameters revealed that average maximum temperature was higher duringJune 2012. The values of THI also were higher in monsoon and post monsoon months hence the practice of sendingcamel calves during relatively comfortable part of hot and hot humid months was successful in getting good growth.The relative humidity was significantly higher during morning as compared to evening period for all months. TheTHI was significantly lower during morning as compared to evening hours for all months in different climate forwhole year. Economic analysis reveals that the cost of feed per kg body weight gain was quite less in group 2 ascompared to group 1. So the practice of grazing of camel calves during cool hours of day remain profitable forfarmers by looking at the body weight gain and better body conformation in climate change condition.


2021 ◽  
Vol 288 (1963) ◽  
Author(s):  
Marcel E. Visser ◽  
Melanie Lindner ◽  
Phillip Gienapp ◽  
Matthew C. Long ◽  
Stephanie Jenouvrier

Climate change has led to phenological shifts in many species, but with large variation in magnitude among species and trophic levels. The poster child example of the resulting phenological mismatches between the phenology of predators and their prey is the great tit ( Parus major ), where this mismatch led to directional selection for earlier seasonal breeding. Natural climate variability can obscure the impacts of climate change over certain periods, weakening phenological mismatching and selection. Here, we show that selection on seasonal timing indeed weakened significantly over the past two decades as increases in late spring temperatures have slowed down. Consequently, there has been no further advancement in the date of peak caterpillar food abundance, while great tit phenology has continued to advance, thereby weakening the phenological mismatch. We thus show that the relationships between temperature, phenologies of prey and predator, and selection on predator phenology are robust, also in times of a slowdown of warming. Using projected temperatures from a large ensemble of climate simulations that take natural climate variability into account, we show that prey phenology is again projected to advance faster than great tit phenology in the coming decades, and therefore that long-term global warming will intensify phenological mismatches.


2020 ◽  
Author(s):  
Luc Yannick Andréas Randriamarolaza ◽  
Enric Aguilar ◽  
Oleg Skrynyk

<p>Madagascar is an Island in Western Indian Ocean Region. It is mainly exposed to the easterly trade winds and has a rugged topography, which promote different local climates and biodiversity. Climate change inflicts a challenge on Madagascar socio-economic activities. However, Madagascar has low density station and sparse networks on observational weather stations to detect changes in climate. On average, one station covers more than 20 000 km<sup>2</sup> and closer neighbor stations are less correlated. Previous studies have demonstrated the changes on Madagascar climate, but this paper contributes and enhances the approach to assess the quality control and homogeneity of Madagascar daily climate data before developing climate indices over 1950 – 2018 on 28 synoptic stations. Daily climate data of minimum and maximum temperature and precipitation are exploited.</p><p>Firstly, the quality of daily climate data is controlled by INQC developed and maintained by Center for Climate Change (C3) of Rovira i Virgili University, Spain. It ascertains and improves error detections by using six flag categories. Most errors detected are due to digitalization and measurement.</p><p>Secondly, daily quality controlled data are homogenized by using CLIMATOL. It uses relative homogenization methods, chooses candidate reference series automatically and infills the missing data in the original data. It has ability to manage low density stations and low inter-station correlations and is tolerable for missing data. Monthly break points are detected by CLIMATOL and used to split daily climate data to be homogenized.</p><p>Finally, climate indices are calculated by using CLIMIND package which is developed by INDECIS<sup>*</sup> project. Compared to previous works done, data period is updated to 10 years before and after and 15 new climate indices mostly related to extremes are computed. On temperature, significant increasing and decreasing decade trends of day-to-day and extreme temperature ranges are important in western and eastern areas respectively. On average decade trends of temperature extremes, significant increasing of daily minimum temperature is greater than daily maximum temperature. Many stations indicate significant decreasing in very cold nights than significant increasing in very warm days. Their trends are almost 1 day per decade over 1950 – 2018. Warming is mainly felt during nighttime and daytime in Oriental and Occidental parts respectively. In contrast, central uplands are warming all the time but tropical nights do not appear yet. On rainfall, no major significant findings are found but intense precipitation might be possible at central uplands due to shortening of longest wet period and occurrence of heavy precipitation. However, no influence detected on total precipitation which is still decreasing over 1950 - 2018. Future works focus on merging of relative homogenization methodologies to ameliorate the results.</p><p>-------------------</p><p>*INDECIS is a part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union (Grant 690462).</p>


2021 ◽  
Vol 22 (2) ◽  
pp. 191-197
Author(s):  
K. PHILIP ◽  
S.S. ASHA DEVI ◽  
G.K. JHA ◽  
B.M.K. RAJU ◽  
B. SEN ◽  
...  

The impact of climate change on agriculture is well studied yet there is scope for improvement as crop specific and location specific impacts need to be assessed realistically to frame adaptation and mitigation strategies to lessen the adverse effects of climate change. Many researchers have tried to estimate potential impact of climate change on wheat yields using indirect crop simulation modeling techniques. Here, this study estimated the potential impact of climate change on wheat yields using a crop specific panel data set from 1981 to 2010,for six major wheat producing states. The study revealed that 1°C increase in average maximum temperature during the growing season reduces wheat yield by 3 percent. Major share of wheat growth and yield (79%) is attributed to increase in usage of physical inputs specifically fertilizers, machine labour and human labour. The estimated impact was lesser than previously reported studies due to the inclusion of wide range of short-term adaptation strategies to climate change. The results reiterate the necessity of including confluent factors like physical inputs while investigating the impact of climate factors on crop yields.


2021 ◽  
Vol 13 (19) ◽  
pp. 10942
Author(s):  
Khun La Yaung ◽  
Amnat Chidthaisong ◽  
Atsamon Limsakul ◽  
Pariwate Varnakovida ◽  
Can Trong Nguyen

Land use land cover (LULC) change is one of the main drivers contributing to global climate change. It alters surface hydrology and energy balance between the land surface and atmosphere. However, its impacts on surface air temperature have not been well understood in a dynamic region of LULC changes like Southeast Asia (SEA). This study quantitatively examined the contribution of LULC changes to temperature trends in Myanmar and Thailand as the typical parts of SEA during 1990–2019 using the “observation minus reanalysis” (OMR) method. Overall, the average maximum, mean, and minimum temperatures obtained from OMR trends indicate significant warming trends of 0.17 °C/10a, 0.20 °C/10a, and 0.42 °C/10a, respectively. The rates of minimum temperature increase were larger than maximum and mean temperatures. The decreases of forest land and cropland, and the expansions of settlements land fractions were strongly correlated with the observed warming trends. It was found that the effects of forest land converted to settlement land on warming were higher than forest conversion to cropland. A comprehensive discussion on this study could provide scientific information for the future development of more sustainable land use planning to mitigate and adapt to climate change at the local and national levels.


Purpose. The aim of this research is detection of trends of changes (according to fact and scenario data) of extreme air temperature as a component of thermal regime in different regions of Ukraine because of global climate change. Methods. System analysis, statistical methods. Results. Time distribution of maximum air temperature regime characteristics based on results of observations on the stations located in different regions of Ukraine during certain available periods: Uzhgorod (1946-2018), Kharkiv (1936-2005), Оdessа (1894-2005), аnd also according to scenarios of low (RCP2.6), medium (RCP4.5) and high (RCP8.5) levels of greenhouse gases emissions. Meanwhile, air temperature ≥ 25°С was considered high (days with maximum temperature within 25,0-29,9°С are hot), ≥ 30°С was considered very high (days with such temperature are abnormaly hot). Trends of changes of extreme air temperatures were identified as a component of thermal regime in different regions of Ukraine within global climate changes. Dynamics of maximum air temperature and its characteristics in ХХ and beginning of ХХІ centuries were researched. Expected time changes of maximum air temperature and number of days with high temperature during 2021-2050 were analyzed by RCP2.6, RCP4.5 and RCP8.5 scenarios. There were identified the highest day air temperatures possible once in a century and also possibility of maximum day temperature more than 30°С by RCP4.5 scenario. Well-timed prediction of climate changes will help evaluate their impact on human and natural systems which will be useful for development and taking preventive measures towards minimization of negative influence of such changes. Conclusions. Processes of climate warming in Ukraine are activating. There was determined a strong trend on increasing of average maximum of air temperature in winter with speed 0.17-0,39 degrees centigrade/10 years. According to climatic norm this index mainly increased mostly (up to 3,3 degrees centigrade) in January in North-East of the country. In future such anomalies will grow. Determination of correlation between climate and health is the base for taking protective measures against perils for population health connected with climate.


2017 ◽  
Vol 14 (2) ◽  
pp. 137-149
Author(s):  
MM Rahman ◽  
MG Miah ◽  
SR Saha

The present study was undertaken for assessing the impacts of climate variability on wheat production as well as the field based suggestions opined by the wheat growers to combat the future challenges particularly climate variability during November 2014 to March 2015. The study was conducted at northwest region at Dinajpur sadar and Kaharul upazilas in Dinajpur of Bangladesh. One hundred sixty wheat farmers were selected by using previously pre-tested interview schedules adopting multistage proportionate systematic random sampling technique. Climatic variability was assessed by analysis of long term data of local meteorological station. Assessment of long term climatic data particularly for wheat growing season revealed that minimum temperature has been increased, while maximum temperature and rainfall were decreased. Farmer’s opinions on these aspects were almost similar. Farmers opined that both surface and ground water levels have been decreased, resulting agricultural drought. Farmer’s also opined regarding suitable technology to combat climate change impact on wheat production revealed the use of newly recommended varieties. Finally, the outcome of the results could help researchers as well as government and NGOs to take appropriate climate change adaptation policy thus facilitating farmers in sustaining their livelihoods against changing climate in the near future of Northwest region in Bangladesh.SAARC J. Agri., 14(2): 137-149 (2016)


Sign in / Sign up

Export Citation Format

Share Document