scholarly journals EXPERIMENTAL STUDY ON REPLACEMENT OF CEMENT USING SILICA FUME AND FINE AGGREGATE USING GLASS POWDER

2020 ◽  
Vol 7 (11) ◽  
pp. 285-293
Author(s):  
Rajesh ◽  
Kai. Kannan ◽  
Jeevanesan R.

Increase in population results in increase in usage of materials which cause much pollution to environmental surroundings if not disposed properly. Replacement of costlier building material by disposable waste material is one of best engineering practice in construction. In this paper replacement of cement using silica fume is done up to 20% and replacement of fine aggregate using glass powder is done up to 40% also silica fume  and glass powder are replaced by 15% and 20%.compressive strength for replaced materials and conventional concrete is studied for 7thday and 28th day. From test result it is concluded that glass powder and silica fume is better effective replaceable materials which is cost effective and eco-friendly.

Author(s):  
Harish R ◽  
Ramesh S ◽  
Tharani A ◽  
Mageshkumar P

This paper presents the results of an experimental investigation of the compressive strength of concrete cubes containing termite mound soil. The specimens were cast using M20 grade of concrete. Two mix ratios for replacement of sand and cement are of 1:1.7:2.7 and 1:1.5:2.5 (cement: sand: aggregate) with water- cement ratio of 0.45 and varying combination of termite mound soil in equal amount ranging from 30% and 40% replacing fine aggregate (sand) and cement from 10%,15%,20% were used. A total of 27 cubes, 18 cylinders and 6 beams were cast by replacing fine aggregate, specimens were cured in water for 7,14 and 28 days. The test results showed that the compressive strength of the concrete cubes increases with age and decreases with increasing percentage replacement of cement and increases with increasing the replacement of sand with termite mound soil cured in water. The study concluded that termite mound cement concrete is adequate to use for construction purposes in natural environment.


Cerâmica ◽  
2017 ◽  
Vol 63 (368) ◽  
pp. 530-535
Author(s):  
Z. L. M. Sampaio ◽  
A. E. Martinelli ◽  
T. S. Gomes

Abstract The recent increase in the construction industry has transformed concrete into an ideal choice to recycle a number of residues formerly discarded into the environment. Among various products, porcelain tile polishing, limestone and tire rubber residues are potential candidates to replace the fine aggregate of conventional mixtures. The aim of this study was to investigate the effect of the addition of varying contents of these residues in lightweight concrete where expanded clay replaced gravel. To that end, slump, compressive strength, density, void ratio, porosity and absorption tests were carried out. The densities of all concrete formulations studied were 10% lower to that of lightweight concrete (<1.850 kg/m³). Nevertheless, mixes containing 10 to 15% of combined residues reduced absorption, void ratio and porosity, at least 17% lower compared to conventional concrete. The strength of such formulations reached 27 MPa at 28 days with consistency of 9 to 12 cm, indicating adequate consistency and increased strength. In addition, the combination of low porosity, absorption and voids suggested improved durability.


2013 ◽  
Vol 10 (1) ◽  
Author(s):  
Rofikatul Karimah

Block made of mud is a building material used in making wall for building that is made fromsand, cement, and fly ash using certain percentage mud in sand. This research aimed to know theeffect of the use of lapindo mud towards the compressive strength, the absorption of block waterwith the mud dosage in sand are: 0%, 10%, 20%, 30%, and 40%. This research was an experimentalresearch; each design was made in size 10x20x40 cm using 5% of fly ash and without fly ash.The result of this research showed that the highest compressive strength was raised in 10%mud in sand with 5% fly ash that was 195 kg/cm2 or increased about 3.44 kg/cm2 within increasingpercentage about 10.651% towards the compressive of block without lapindo mud with 5% of flyash, and was included in class I quality of block. While for the 30% and 40% mud percentage islower compared with normal compressive strength of block. The test result of water absorption oflapindo mud block showed the higher value than 20% for lapindo mud block with 5% fly ash, inframing the mud blocks as the wall, those blocks need to be soaked first because the absorptionvalue of block is higher than 20%. Lapindo mud block without 5% fly ash has bricks water absorptionless than 20%, while in framing those bricks, they don’t need to be soaked because the absorptionof brick if lower than 20%. By using fly ash in mud block, we can get the higher compressivestrength and the lower water absorption.Keyword: Porong Mud, Block, Fly Ash, Compressive Strength, Absorption


2019 ◽  
Vol 2 (2) ◽  
pp. 65
Author(s):  
Purwanto P. ◽  
Himawan Indarto

Portland cement production process which is the conventional concrete constituent materials always has an impact on producing carbon dioxide (CO2) which will damage the environment. To maintain the continuity of development, while maintaining the environment, Portland cement substitution can be made with more environmentally friendly materials, namely fly ash. The substitution of fly ash material in concrete is known as geopolymer concrete. Fly ash is one of the industrial waste materials that can be used as geopolymer material. Fly ash is mineral residue in fine grains produced from coal combustion which is mashed at power plant power plant [15]. Many cement factories have used fly ash as mixture in cement, namely Portland Pozzolan Cement. Because fly ash contains SiO2, Al2O3, P2O3, and Fe2O3 which are quite high, so fly ash is considered capable of replacing cement completely.This study aims to obtain geopolymer concrete which has the best workability so that it is easy to work on (Workable Geopolymer Concrete / Self Compacting Geopolymer Concrete) and obtain the basic characteristics of geopolymer concrete material in the form of good workability and compressive strength. In this study, geopolymer concrete is composed of coarse aggregate, fine aggregate, fly ash type F, and activators in the form of NaOH and Na2SiO3 Be52. In making geopolymer concrete, additional ingredients such as superplastizer are added to increase the workability of geopolymer concrete. From this research, the results of concrete compressive strength above fc' 25 MPa and horizontal slump values reached 60 to 80 centimeters.


This paper presents an experimental investigation on the properties of concrete in which like cement is partially replacing by used nano silica and is partially replacing by used waste foundry sand. Because now a day the world wide consumption of sand as cement and as fine aggregate in concrete production is very high. Nano silica and waste foundry sand are major by product of casting industry and create land pollution. The cement will be replaced with nano silica and the river sand will be replaced with waste foundry sand (0%, 5%, 10%, 15%, 20%). This experimental investigation was done and found out that with the increase in the nano silica and waste foundry sand ratio. Compression test has been done to find out the compressive strength of concrete at the age of 7, 14, 21, and 28. Test result indicates in increasing compressive strength of plain concrete by inclusion of nano silica as a partial replacement of cement and waste foundry sand as a partial replacement of fine aggregate.


2014 ◽  
Vol 11 (4) ◽  
pp. 323-330 ◽  
Author(s):  
S. Arivalagan

The present day world is witnessing the construction of very challenging and difficult civil engineering structures. Self-compacting concrete (SCC) offers several economic and technical benefits; the use of steel fiber extends its possibilities. Steel fiber acts as a bridge to retard their cracks propagation, and improve several characteristics and properties of the concrete. Therefore, an attempt has been made in this investigation to study the Flexural Behaviour of Steel Fiber Reinforced self compacting concrete incorporating silica fume in the structural elements. The self compacting concrete mixtures have a coarse aggregate replacement of 25% and 35% by weight of silica fume. Totally eight mixers are investigated in which cement content, water content, dosage of superplasticers were all constant. Slump flow time and diameter, J-Ring, V-funnel, and L-Box were performed to assess the fresh properties of the concrete. The variable in this study was percentage of volume fraction (1.0, 1.5) of steel fiber. Finally, five beams were to be casted for study, out of which one was made with conventional concrete, one with SCC (25% silica fume) and other were with SCC (25% silica fume + 1% of steel fiber, 25% silica fume + 1.5% of steel fiber) one with SCC (35% silica fume), and other were SCC (35% Silica fume + 1% of steel fiber, 35% Silica fume + 1.5% of steel fiber). Compressive strength, flexural strength of the concrete was determined for hardened concrete for 7 and 28 days. This investigation is also done to determine the increase the compressive strength by addition of silica fume by varying the percentage.


2019 ◽  
Vol 276 ◽  
pp. 01014
Author(s):  
I Made Alit Karyawan Salain ◽  
I Nyoman Sutarja ◽  
Teguh Arifmawan Sudhiarta

This experimental study presents the properties of highperformance concrete (HPC) made by partially replacing type I Portland cement (OPC) with class C fly ash (CFA). The purpose of this study is to examine, with hydration time, the development of the compressive strength, the splitting tensile strength and the permeability of HPC utilizing different quantity of CFA. Four HPC mixtures, C1, C2, C3, and C4, were made by utilizing respectively 10%, 20%, 30% and 40% of CFA as replacement of OPC, by weight. One control mixture, C0, was made with 0% CFA. The mix proportion of HPC was 1.00 binder: 1.67 fine aggregate: 2.15 coarse aggregate with water to binder ratio 0.32. In each mixture, it was added 5% silica fume and 0.6% superplasticizer of the weight of the binder. Tests of HPC properties were realized at the age of 1, 3, 7, 28, and 90 days. The results indicate that CFA used to partially replace OPC in HPC shows adequate cementitious and pozzolanic properties. The compressive strength and the splitting tensile strength of HPC increase while the permeability coefficient decreases with increasing hydration time. It is found that the optimum replacement of OPC with CFA is 10%, however the replacement up to 20% is still acceptable to produce HPC having practically similar harden properties with control mixture. At this optimum replacement and after 90 days of hydration, the compressive strength, the splitting tensile strength and the permeability coefficient can reach 68.9 MPa, 8.3 MPa and 4.6 E-11 cm/sec respectively. These results are 109%, 101%, and 48% respectively of those of control mixture.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1821 ◽  
Author(s):  
Robert Bušić ◽  
Mirta Benšić ◽  
Ivana Miličević ◽  
Kristina Strukar

The paper aims to investigate the influence of waste tire rubber and silica fume on the fresh and hardened properties of self-compacting concrete (SCC) and to design multivariate regression models for the prediction of the mechanical properties of self-compacting rubberized concrete (SCRC). For this purpose, 21 concrete mixtures were designed. Crumb rubber derived from end-of-life tires (grain size 0.5–3.5 mm) was replaced fine aggregate by 0%, 5%, 10%, 15%, 20%, 25%, and 30% of total aggregate volume. Silica fume was replaced cement by 0%, 5%, and 10% of the total cement mass. The optimal replacement level of both materials was investigated in relation to the values of the fresh properties and mechanical properties of self-compacting concrete. Tests on fresh and hardened self-compacting concrete were performed according to the relevant European standards. Furthermore, models for predicting the values of the compressive strength, modulus of elasticity, and flexural strength of SCRC were designed and verified with the experimental results of 12 other studies. According to the obtained results, mixtures with up to 15% of recycled rubber and 5% of silica fume, with 28 days compressive strength above 30 MPa, were found to be optimal mixtures for the potential future investigation of reinforced self-compacting rubberized concrete structural elements.


Author(s):  
V Venkatadurga Raju and V Bhargavi Y Priyanka,

Pervious Concrete for the pavements proves to be an effective and along- term solution for the universal problem of abnormal decrease of ground water table. Pervious Concrete has a unique mix design and giving special properties to the concrete which makes the concrete porous , allowing water from precipitation and other sources to pass directly through , there by reducing run off volume and increasing ground water table. Inorder to reduce the damage being caused to the environment by the use of cement , inpervious concrete , cement is replaced with pozzolanic materials such as GGBS , silica fume sand to increase strength and durability , glass fibers in stipulated ratio are added to the concrete mixture. In this study ,the mix designs such as M30 and PC30 are considered . The fine aggregate is replaced with coarseaggregate by different ratios like 0% , 5% , 10% ,15%. by adding different pozzolanic matrals like GGBS, silicafume with glassfibers. To find the effectiveness of the use of pozzolancic and glassfibes, compressive strength conducted. The following Conclusions can be summarized by analyzing tests performed on PC specimens. A significant reduction of workability. And A progressive addition in compressive strength by increasing the percentage of fine aggregates and pozzolanic materials in mix. The conclusion of fine aggregate content in the specimen increases the density and increase the pozzolanic materials addition. And addition of silica fume and GGBS in the mixtures improve strength , compressive strength increases even after adding pozzolanic materials. Due to increase of fine aggregate content. For all replacement levels of PC with other mixes goes on decreasing in strength when compared with parent grade ofM30. While comparing with PC with Pozzolanic materials, For 7 days there is a drastic change for same replacement, and for 28 days itshowssimilar trend for 25% pozzolanic concrete and goes on decreasing for strength for compressive strength. For all replacement levels of PC with pozzolanic goes on decreasing in strength when compared with parent grade of M30. Compressive strength slightly increased by adding glass fibers to the allmixes.


Sign in / Sign up

Export Citation Format

Share Document