scholarly journals Logic Synthesis for Emerging Technologies

2021 ◽  
Vol 16 (1) ◽  
pp. 1-9
Author(s):  
Augusto Neutzling ◽  
Renato Perez Ribas

Emerging technologies are being considered to replace the conventional CMOS-based design that seems arriving to its end of life due to the limits of MOS transistor shrinking. However, since those novel devices are not necessarily switch-based ones, the traditional AND/OR logic synthesis process in the digital integrated circuit design flow tends to become inefficient, whereas threshold logic paradigm seems to be more appropriate for them. In this context, different methods for threshold logic synthesis, suitable for emerging technologies, are reviewed in this paper. The majority logic based design is also discussed herein since it represents a subset of threshold logic domain, and many new technologies have presented the 3-input majority Boolean function as the most basic logic gate. Experimental data, presented in previous works, are used to illustrate and compare the performance of the state-ofthe-art       logic synthesis methods related to

2016 ◽  
Vol 64 (3) ◽  
pp. 467-478
Author(s):  
J. Tkacz ◽  
A. Bukowiec ◽  
M. Adamski

Abstract In the paper, design flow of the application specific logic controllers with increased safety by means of Petri nets is proposed. The controller architecture is based on duplicated control unit and comparison results from both units. One specification of control algorithm is used by means of Petri net for both units. The hardware duplication is obtained during dual synthesis process. This process uses two different logic synthesis methods to obtain two different hardware configurations for both control units. Additionally, the dual verification is applied to increase reliability of the control algorithm. Such design flow simplifies the process of realization of control systems with increased safety.


2018 ◽  
Vol 2018 (HiTEC) ◽  
pp. 000064-000070
Author(s):  
N. Chiolino ◽  
A. M. Francis ◽  
J. Holmes ◽  
M. Barlow

Abstract Advancements in Silicon Carbide (SiC) digital integrated circuit (IC) design have enabled the ability to design complex, dense, digital blocks. Because of the large number of transistors, these complex digital designs make the time and risk of hand-crafted digital design, which has been the norm for SiC, too costly and risky. For large scale integrated digital circuits, computer aided design (CAD) tools are necessary, specifically the use of automatic synthesis, rule-based placement and signal routing software. The tools are used in progression as a design flow and are necessary for the timely and accurate creation of high-density digital designs. Application of an automated digital design flow to high-temperature SiC processes presents new challenges, such as extraction of timing characteristics at high temperatures, specifically above 400°C, as well as managing the complexity of synthesis, optimization of cell placement, verification of timing enclosure, and identifying routing constraints. These activities all require a willingness to extend and enhance the CAD software. Presented is a high temperature SiC digital synthesis flow. This flow is fully integrated with the characterization of a standard cell library that considers the variation of voltage, temperature, and process characteristics. A digital controller for a 10,000-pixel UV focal plan array (FPA) in a SiC CMOS process was designed using this high temperature digital flow. The controller is comprised of a finite state machine (FSM), that monitors several counters, shift registers and combinational logic feedback signals. The FSM is configured to optimize the FPA for different applications and exposures. The Register-Transfer Level (RTL) design of the FSM produces between 900 and 1,000 gates, depending on the temperature-dependent time closure with a total footprint of 14mm2. Typical SiC processes present a non-monotonic clock speed over temperature. The advantage of this digital design flow is that it allows the designer to target a temperature corner for the netlist design but verify its operation over a > 400°C operating range. This flow is currently being enhanced for use with NASA's SiC JFET-R process to create a high temperature communication protocol interface.


Emerging technologies have always played an important role in armed conflict. From the crossbow to cyber capabilities, technology that could be weaponized to create an advantage over an adversary has inevitably found its way into military arsenals for use in armed conflict. The weaponization of emerging technologies, however, raises challenging legal issues with respect to the law of armed conflict. As States continue to develop and exploit new technologies, how will the law of armed conflict address the use of these technologies on the battlefield? Is existing law sufficient to regulate new technologies, such as cyber capabilities, autonomous weapons systems, and artificial intelligence? Have emerging technologies fundamentally altered the way we should understand concepts such as law-of-war precautions and the principle of distinction? How can we ensure compliance and accountability in light of technological advancement? This book explores these critical questions while highlighting the legal challenges—and opportunities—presented by the use of emerging technologies on the battlefield.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1463 ◽  
Author(s):  
Vishma Pratap Sur ◽  
Marketa Kominkova ◽  
Zaneta Buchtova ◽  
Kristyna Dolezelikova ◽  
Ondrej Zitka ◽  
...  

The physical and chemical synthesis methods of quantum dots (QDs) are generally unfavorable for biological applications. To overcome this limitation, the development of a novel “green” route to produce highly-fluorescent CdSe QDs constitutes a promising substitute approach. In the present work, CdSe QDs were biosynthesized in yeast Saccharomyces cerevisiae using a novel method, where we showed for the first time that the concentration of tryptone highly affects the synthesis process. The optimum concentration of tryptone was found to be 25 g/L for the highest yield. Different methods were used to optimize the QD extraction from yeast, and the best method was found to be by denaturation at 80 °C along with an ultrasound needle. Multiple physical characterizations including transmission electron microscopy (TEM), dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDX), and spectrophotometry confirmed the optical features size and shape distribution of the QDs. We showed that the novel conjugate of the CdSe QDs and a cell-penetrating peptide (hecate) can detect bacterial cells very efficiently under a fluorescent microscope. The conjugate also showed strong antibacterial activity against vancomycin-resistant Staphylococcus aureus (VRSA), methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia coli, which may help us to cope with the problem of rising antibiotic resistance.


2021 ◽  
Vol 13 (11) ◽  
pp. 6372
Author(s):  
Vincenzo Varriale ◽  
Antonello Cammarano ◽  
Francesca Michelino ◽  
Mauro Caputo

The digital transformation of supply chains should revolutionize entire management processes and improve various aspects of sustainability. In particular, the plans of Industry 4.0 aim towards a digitization of several procedures by exploiting emerging technologies such as the Internet of Things, RFID and blockchain. The purpose of this study is to highlight how order and disruption events processes can be improved with the adoption of emerging technologies and how this reflects on the improvement of sustainability aspects. The study is based on the comparison of two simulation scenarios between three actors in the cheese supply chain. In particular, a first traditional scenario “as is” is simulated without the use of new technologies and is compared to a second scenario “to be” that adopts IoT, RFID and blockchain. The results show an improvement in time performance for managing both perfect and non-compliant orders. The developed framework highlights the impact of new technologies on sustainability aspects, showing further managerial implications.


2021 ◽  
Vol 22 (10) ◽  
pp. 5401
Author(s):  
Marta Dziewięcka ◽  
Mirosława Pawlyta ◽  
Łukasz Majchrzycki ◽  
Katarzyna Balin ◽  
Sylwia Barteczko ◽  
...  

Interest in graphene oxide nature and potential applications (especially nanocarriers) has resulted in numerous studies, but the results do not lead to clear conclusions. In this paper, graphene oxide is obtained by multiple synthesis methods and generally characterized. The mechanism of GO interaction with the organism is hard to summarize due to its high chemical activity and variability during the synthesis process and in biological buffers’ environments. When assessing the biocompatibility of GO, it is necessary to take into account many factors derived from nanoparticles (structure, morphology, chemical composition) and the organism (species, defense mechanisms, adaptation). This research aims to determine and compare the in vivo toxicity potential of GO samples from various manufacturers. Each GO sample is analyzed in two concentrations and applied with food. The physiological reactions of an easy model Acheta domesticus (cell viability, apoptosis, oxidative defense, DNA damage) during ten-day lasting exposure were observed. This study emphasizes the variability of the GO nature and complements the biocompatibility aspect, especially in the context of various GO-based experimental models. Changes in the cell biomarkers are discussed in light of detailed physicochemical analysis.


1997 ◽  
Vol 33 (12) ◽  
pp. 1028
Author(s):  
J.M. Quintana ◽  
M.J. Avedillo ◽  
A. Rueda
Keyword(s):  
Low Cost ◽  

F1000Research ◽  
2021 ◽  
Vol 9 ◽  
pp. 678
Author(s):  
Miranda S. Cumpston ◽  
Joanne E. McKenzie ◽  
James Thomas ◽  
Sue E. Brennan

Introduction: Systematic reviews involve synthesis of research to inform decision making by clinicians, consumers, policy makers and researchers. While guidance for synthesis often focuses on meta-analysis, synthesis begins with specifying the ’PICO for each synthesis’ (i.e. the criteria for deciding which populations, interventions, comparators and outcomes are eligible for each analysis). Synthesis may also involve the use of statistical methods other than meta-analysis (e.g. vote counting based on the direction of effect, presenting the range of effects, combining P values) augmented by visual display, tables and text-based summaries. This study examines these two aspects of synthesis. Objectives: To identify and describe current practice in systematic reviews of health interventions in relation to: (i) approaches to grouping and definition of PICO characteristics for synthesis; and (ii) methods of summary and synthesis when meta-analysis is not used. Methods: We will randomly sample 100 systematic reviews of the quantitative effects of public health and health systems interventions published in 2018 and indexed in the Health Evidence and Health Systems Evidence databases. Two authors will independently screen citations for eligibility. Two authors will confirm eligibility based on full text, then extract data for 20% of reviews on the specification and use of PICO for synthesis, and the presentation and synthesis methods used (e.g. statistical synthesis methods, tabulation, visual displays, structured summary). The remaining reviews will be confirmed as eligible and data extracted by a single author. We will use descriptive statistics to summarise the specification of methods and their use in practice. We will compare how clearly the PICO for synthesis is specified in reviews that primarily use meta-analysis and those that do not. Conclusion: This study will provide an understanding of current practice in two important aspects of the synthesis process, enabling future research to test the feasibility and impact of different approaches.


2021 ◽  
pp. 1-13
Author(s):  
Rongjiang Cui ◽  
Zhizheng Ye ◽  
Shifu Xu ◽  
Chuan-yu Wu ◽  
Liang Sun

Abstract The structural synthesis of planar kinematic chains (KCs) with prismatic pairs (P-pairs) is the basis of innovating mechanisms containing P-pairs. In literature, only a little research has been carried out to synthesize planar KCs with P-pairs. Moreover, these synthesis methods for KCs with P-pairs involve all possible combinations of edges, resulting in a large number of isomorphic KCs and a low synthesis efficiency. In this study, our previous similarity recognition algorithm is improved and applied to synthesize planar KCs with P-pairs. Only a small number of isomorphic KCs are generated in the synthesis process, and the synthesis efficiency is greatly enhanced. Our method is applied to synthesize 9-link 2-DOF, 10-link 1-DOF, and 11-link 2-DOF KCs with one and two P-pairs. Our synthesis results are consistent with those of the existing literature. The present work is helpful to design mechanisms with P-pairs and can be extended to mechanisms with other types of kinematic pairs.


Sign in / Sign up

Export Citation Format

Share Document