scholarly journals Bioethanol-Fuel Mixed Analysis on Engine Power and Torque

This paper discusses the analysis of the bioethanol-fuel mixture on engine power and torque. The aim is to find alternative fuel sources that can reduce the amount of fuel needed. Onesource is bioethanol as a mixture of fuel in motorized vehicles and industry. The method used by testing using the Dynotest Hofmann tool on a 150 CCmotorbike. Research focuses on engine power and torque. With a variety of bioethanol-fuel mixture (10: 90%; 20: 80%; 30: 70%; 40: 60%; 50: 50%; 60: 40%; 70: 30%; 73: 27%). The results showed that the addition of bioethanol with a percentage of 10%, 20%, and 30% can increase the power in every rotation change, but in a mixture of more than 30% tends to experience a decrease in motor power with each increase in engine speed. This is because bioethanol still contains water, and the ratio of air to fuel is too low so that combustion is not complete

2021 ◽  
Vol 4 (2) ◽  
pp. 62-67
Author(s):  
Syarifudin Syarifudin ◽  
Firman Lukman Sanjaya ◽  
Faqih Fatkhurrozak ◽  
M. Khumaidi Usman ◽  
Yohanes Sibagariang ◽  
...  

The increasing volume of motorized vehicles leads to an increase in dependence on fossil fuels and an increase in air pollution. The problem can be reduced by utilizing renewable alcohol fuels such as methanol, ethanol, and butanol. The high number of octane and oxygen content is the main reason. Therefore, this study aims to observe the exhaust emissions of the 160 cc gasoline engine with a mixture of methanol, ethanol, and butanol. The percentage of alcohol used is 0 % to 30 % by volume. The test was carried out in 2000, 3000, and 4000 rpm. The results of the study explained that the use of methanol, ethanol, butanol in the fuel mixture was proven to reduce exhaust emissions. CO and HC emissions decreased as the percentage of alcohol in the fuel increased. The highest reduction in CO and HC emission in methanol blended fuel was 30 %, 94.55 % and 82.71 %, respectively. Meanwhile, CO2 emissions increased by 34.88 % at 2000 rpm engine speed. Based on this test, the addition of methanol to fuel can reduce exhaust emissions better than ethanol and butanol.


Author(s):  
A. P. Shaikin ◽  
I. R. Galiev

The article analyzes the influence of chemical composition of hythane (a mixture of natural gas with hydrogen) on pressure in an engine combustion chamber. A review of the literature has showed the relevance of using hythane in transport energy industry, and also revealed a number of scientific papers devoted to studying the effect of hythane on environmental and traction-dynamic characteristics of the engine. We have studied a single-cylinder spark-ignited internal combustion engine. In the experiments, the varying factors are: engine speed (600 and 900 min-1), excess air ratio and hydrogen concentration in natural gas which are 29, 47 and 58% (volume).The article shows that at idling engine speed maximum pressure in combustion chamber depends on excess air ratio and proportion hydrogen in the air-fuel mixture – the poorer air-fuel mixture and greater addition of hydrogen is, the more intense pressure increases. The positive effect of hydrogen on pressure is explained by the fact that addition of hydrogen contributes to increase in heat of combustion fuel and rate propagation of the flame. As a result, during combustion, more heat is released, and the fuel itself burns in a smaller volume. Thus, the addition of hydrogen can ensure stable combustion of a lean air-fuel mixture without loss of engine power. Moreover, the article shows that, despite the change in engine speed, addition of hydrogen, excess air ratio, type of fuel (natural gas and gasoline), there is a power-law dependence of the maximum pressure in engine cylinder on combustion chamber volume. Processing and analysis of the results of the foreign and domestic researchers have showed that patterns we discovered are applicable to engines of different designs, operating at different speeds and using different hydrocarbon fuels. The results research presented allow us to reduce the time and material costs when creating new power plants using hythane and meeting modern requirements for power, economy and toxicity.


2021 ◽  
Vol 157 (A4) ◽  
Author(s):  
R Grega ◽  
J Homišin ◽  
M Puškár ◽  
J Kul’ka ◽  
J Petróci ◽  
...  

Development of diesel engines is focused on reduction of exhaust gas emissions, increase of efficiency of the fuel mixture combustion and decrease of fuel consumption. Such engines are referred to as low-emission engines. Low- engines trends bring higher engine power outputs, torques and also increase of vibrations and noisiness level. In order to reduce these vibrations of diesel engines, it is necessary to apply different dynamical elements, which are able to increase an adverse impact of exciting amplitudes. One of the results is application of a pneumatic dual-mass flywheel. The pneumatic dual-mass flywheel is a dynamical element that consists of two masses (the primary and the secondary mass), which are jointed together by means of a flexible interconnection. This kind of the flywheel solution enables to change resonance areas of the mechanical system which consequently leads to reduction of vibrations.


2021 ◽  
Vol 8 (3) ◽  
pp. 89-96
Author(s):  
Herbert Hasudungan Siahaan ◽  
Armansyah H Tambunan ◽  
Desrial ◽  
Soni Solistia Wirawan

A helical barrier as air-biogas mixing device was designed and tested for direct use of biogas from digester in otto cycle generator set. Homogeneity of the air-fuel mixture can give better combustion reaction and increase engine power. The design was based on simulation, which shows that a 0.039 m length of helical barrier gave a 5% increase in power compared to non-helical barrier. Likewise, the simulations also showed that the helical barrier reduced specific fuel consumption (SFC) by 8%. Accordingly, the mixer with helical barrier was designed, and fabricated. Its performance test confirms the improvement resulted by using helical barriers as air-biogas mixer in the engine. The experiment showed that the power increased by 5% when using helical barrier, while SFC decreased by 4.5%. It is concluded that the helical barrier can increase the homogeneity of the mixture resulting in better engine performance. Besides, emissions produced from the engine using a helical barrier also decreased.


Author(s):  
M. Paloboran ◽  
H. Syam ◽  
M. Yahya ◽  
Darmawang

This research aims to improve the combustion performance of gasoline-bioethanol fuel blended in the ratio of 50:50 (E50) on the spark-ignition engine by employing a new combustion strategy. The Box Behnken Design of Response Surface Methodology and Non-Linear Programming was employed to optimize the performance of the engine and create some engine parameters. The performance of the engine consists of power, torque, thermal efficiency, fuel consumption, and the emission of CO and HC, while the engine and combustion parameters are compression ratio, ignition timing, and engine speed. A new combustion strategy will be applied in this study with a tiered mapping process for each engine parameter based on the MBT. The brake torque increased by 13.5 % while HC and CO emissions decreased by 15 % and 71 % respectively when the combustion strategy applied if compared o the pure gasoline in engine standard condition. Furthermore, the BSFC increased by 33 % while BTE decreased by 15 % towards the gasoline fuel. The non-linear programming applied in this study intended to figure out the best combination of the engine parameters in obtaining optimum engine performances. In the RSM analysis, the codes --1, 0, 1 represented 12, 12.5, and 13 of compression ratio, 16, 20, and 24 BTDC of ignition timing and 2000, 5000, and 8000 rpm of engine speed. Therefore, 20 BTDC of ignition timing and 13:1 of compression ratio is the optimum engine parameters used in gaining the optimal performance of the engine when E50 runs in SI-PFI engine of 150 cm3


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 179 ◽  
Author(s):  
Jinchi Tang ◽  
Xiongfeng Hu ◽  
Fuqiang Lai ◽  
Xiaolong Guo ◽  
Shengguan Qu ◽  
...  

In this paper, the fretting wear properties of 20CrMnTi steel, a common material for a rocker bracket, was discussed for the first time after it was suffered carburizing treatment. Subsequently, the fretting wear behaviors of virgin, quenched, and carburized states were studied. The effect of loads (corresponding to different engine power output) and reciprocating frequencies (corresponding to different engine speed) on wear behaviors and mechanisms of carburized specimen were further discussed. The results showed that the coefficient of friction (CoF) and wear volume loss (WVL) of the carburized specimens were significantly lower than that of virgin and quenched states. During the wear test, the surface CoF decreased gradually with the increase of applied load, while the linear correlation trend was not observed with the increase of fretting frequency as it showed an increase first and then a decrease. It was observed that the WVL increased gradually with the increase of load and frequency. With an increase of the load, the wear mechanism gradually deteriorated from the initial adhesive wear to the mixed wear mechanism. When the load was high, the oxidative wear became more severe. However, no significant effect of frequency was observed on the wear mechanism.


2016 ◽  
Vol 46 (7) ◽  
pp. 1200-1205 ◽  
Author(s):  
Javier Solis Estrada ◽  
José Fernando Schlosser ◽  
Marcelo Silveira de Farias ◽  
Fabrício Azevedo Rodrigues ◽  
Alfran Tellechea Martini ◽  
...  

ABSTRACT: This research evaluated the performance of a diesel engine in an agricultural tractor, using Diesel S500 (B5) and mixture with 3% (ED3), 6% (ED6), 9% (ED9), 12% (ED12) and 15% (ED15) of hydrous ethanol. Variables evaluated were the power, torque, specific fuel consumption, torque reserve, speed reserve and elasticity index of engine. Results indicated that using B5 and ED3 the values of torque and engine power not differ, in addition, with the ED3 the fuel consumption was lower than 5.92%. Using ED12, power has reduced in 2.97%, compared with B5, while their fuel consumption had no difference. With ED15, the power was lower 6.30% and the fuel consumption increase 3.77%, both compared with B5. Torque reserve value was increased with increasing the ethanol content in B5, reducing the speed reserve and elasticity index of engine. Ethanol in Diesel S500 (B5) can be used as an alternative fuel in agricultural tractor engines without presenting high changes in the performance, since the ethanol content is at low percentages, up to 12%.


2014 ◽  
Vol 659 ◽  
pp. 211-216
Author(s):  
Nikolaos Cristian Nutu ◽  
Constantin Pana ◽  
Alexandru Dobre ◽  
Niculae Negurescu ◽  
Alexandru Cernat

The severe legislation regarding pollution from actual time determine us to find new alternative solutions for diesel engine fuelling. This paper objective is the use of LPG as alternative fuel at a diesel engine in the purpose of pollutant emissions level decreasing in general and especially of NOx and smoke emissions. Is difficult to use LPG as single fuel at the diesel engine because it has an high auto ignition endurance (CN = -3). There are many fuelling methods of the diesel engine with LPG, but the authors of this paper used the diesel-gas method for a 1,5 l engine fuelling. The research followed the establishment of the optimal LPG cyclic dose and the diesel engine adjustments for different engine operating regimen. The paper presents results of some theoretical and experimental investigations of the LPG fuelled diesel engine. Three substitute ratios of diesel fuel with LPG were taken into account for full load and 2000 rpm engine speed. Thus, the NOx emissions decreased with 20-28 % for different substitute ratios of diesel fuel with LPG. The smoke emission decreased with 35-47% for same substitute ratios. LPG fuelling represents a very good solution for a cleaner environment.


Author(s):  
Antanas Juostas ◽  
Algirdas Janulevičius

The paper presents tractor working data and their engine conditions from economical and ecological point of view. Overlooked results presented in literature have a straight relation with reduction of tractor fuel consumption and unfriendly impact on the environment. The results of measurements show that for investigation of tractor performance quality during its working life, information collected in its microprocessors can be used. Investigation results of engine speed and torque aspects of different Deutz Fahr Agrotron tractor models with different working output are presented in the paper. Investigation results show that a tractor on average worked from 37% to 52% of the total working hours at a high torque (>50% Mmax ) and at medium (1000–2000 rpm) and high (>2000 rpm) engine speed. The investigation results show that almost half of tractor working time is unreasonable. The paper presents big improvement possibilities for tractor operating technologies by using a wider range of engine power, decreasing fuel consumption and unfriendly impact on the environment. Santrauka Tirta traktorių degalų sąnaudų ir žalingo poveikio aplinkai mažinimo galimybės. Matavimų rezultatais pagrindžiama, kad traktorių darbo kokybei per eksploatavimo laikotarpį tirti galima naudoti jų mikroprocesoriuose sukauptą informaciją. Pateikiami įvairių modelių ir įvairaus išdirbio Deutz Fahr Agrotron traktorių darbo kokybės (variklio sūkių dažnio ir apkrovos aspektais) per eksploatavimo laikotarpį tyrimų rezultatai. Nustatyta, kad didele apkrova (>50 % Mmax) vidutiniais (1000–2000 min–1) ir dideliais (>2000 min–1) variklio sūkiais traktoriai vidutiniškai dirba 37–52 % eksploatacijos laikotarpio, ir apie pusę eksploatacijos trukmės traktorių darbas neracionalus. Daroma išvada, kad visą traktorių eksploatavimo laiką galima tobulinti technologijas, parenkant tinkamesnius variklių darbo režimus, mažinti degalų sąnaudas ir žalingą poveikį aplinkai. Резюме Целью исследований было уменьшение потребления горючего в тракторных двигателях и их вредного влияния на окружающую среду. Проанализированы качественные характеристики (обороты и нагрузка двигателя ) разных моделей тракторов фирмы Deutz Fahr Agrotron, с разной наработкой моточасов за весь период эксплуатации. Исследованиями выявлено, что время работы тракторов с большой нагрузкой (>50% Mmax) при средних (1000– 2000 мин–1) и больших (>2000 мин–1) оборотах двигателя составляет 37–52% всего периода эксплуатации. Около половины всего времени в период эксплуатации тракторы работают нерационально. Делается вывод, что в период эксплуатации тракторов существует возможность совершенствовать технологии, шире применять лучшие режимы работы двигателей, снижать потребление горючего и вредное влияние на окружающую среду.


Transport ◽  
2008 ◽  
Vol 23 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Antanas Juostas ◽  
Algirdas Janulevičius

Article analyzes tractor working and its engine conditions from economical point of view. Overview of tractor wheel slippage reliance on the traction force and weight utilization coefficient is given. Tractor maximum driving force according to road and field conditions, and driving speed are submitted. Literature and theoretical investigation analysis is done, where interaction between tractor wheels made‐up driving force and grip is analysed. Driving speed and driving force dependence on rolling resistance and total aggregate weight using nominal power is described. In the present experimental research reduction in fuel consumption of tractor transport aggregate by reducing engine speed and by keeping the same work speed, was determined.


Sign in / Sign up

Export Citation Format

Share Document