scholarly journals Effect of Metformin on Lactate Metabolism in Normal Hepatocytes under High Glucose Stress in Vitro

2021 ◽  
Vol 4 (2) ◽  
pp. 31
Author(s):  
Jianhao Wu ◽  
Qinnan Zhang ◽  
Yubiao Yang ◽  
Chunyue Wang ◽  
Xindi Yue ◽  
...  

Objective: To study the effect of metformin on lactate metabolism in hepatocytes in vitro under high glucose stress. Method: LO2 hepatocytes was cultured in vitro, hepatocytes were randomly divided into blank control group, 25 mmol/L glucose solution, 27 mmol/L glucose solution, 29 mmol/L glucose solution, 31 mmol/L glucose solution, 33 mmol/L glucose solution, 35 mmol/L glucose solution treatment group, after determining the optimal concentration as 31 mmol/L, use 30 mmol/L metformin solution, and then divided into blank control group, normal hepatocytes + the optimal concentration of glucose solution, normal hepatocytes + metformin solution , normal hepatocytes+. The optimal concentration of glucose solution normal hepatocytes + metformin solution, calculate the number of hepatocytes on cell count plate respectively in the 12 h, 24 h, 48 h, and use the lactic acid kit to determine the lactic acid value of the cell culture medium of normal liver cells + optimal concentration glucose solution and normal liver cells + optimal concentration glucose solution + metformin solution at 12 h, 24 h, and 48 h, respectively. Results: There was no significant change in the lactic acid concentration but significant increase in the number of surviving hepatocytes in the high-glycemic control group compared with that in the high-glycemic control group without metformin. Conclusions: Metformin has no significant effect on lactic acid metabolism of hepatocytes under high glucose stress in vitro, and has a protective effect on hepatocytes under high glucose stress. Based on this, it is preliminarily believed that metformin is not the direct factor leading to diabetic lactic acidosis.

2021 ◽  
Vol 3 (1) ◽  
pp. 27
Author(s):  
Xinxin Zhou ◽  
Xinliang Liu ◽  
Ling Zhang ◽  
Yongyan Chen ◽  
Shaoliang Guo ◽  
...  

Objective To study the effect of metformin on lactate metabolism in hepatocytes in vitro under high glucose stress. In vitro LO2 cells, liver cells were randomly divided into blank control group, 25 tendency/L glucose solution, 27 tendency/L glucose solution,29 tendency/L glucose solution, 31 tendency/L glucose solution, 33 tendency/L glucose solution,35 tendency/L glucose solution treatment group, the optimal concentration of 31 tendency after L, use 30 tendency for L metformin solution, and then divided into blank control group, the optimal concentration of glucose solution, normal liver cells + metformin solution normal liver cells. The optimal concentration of glucose solution normal liver cells + metformin solution respectively in the 12 h, 24 h,48 h on cell count plate to calculate the number of liver cells, and using lactic acid determination kit the optimal concentration of glucose solution + normal liver cells and normal liver cells + the optimal concentration of glucose solution + metformin solution respectively in the 12 h, 24 h, 48 h of cell cultures of lactic acid value. There was no significant change in the lactic acid concentration but significant increase in the number of surviving hepatocytes in the highglycemic control group compared with that in the high-glycemic control group without metformin. Metformin has no significant effect on lactic acid metabolism of hepatocytes under high glucose stress in vitro, and has a protective effect on hepatocytes under high glucose stress. Based on this,it is preliminarily believed that metformin is not the direct factor leading to diabetic lactic acidosis.


2021 ◽  
Vol 11 (13) ◽  
pp. 5765
Author(s):  
Joo-Yun Kim ◽  
Eun-Jung Choi ◽  
Jae-Ho Lee ◽  
Myeong-Seok Yoo ◽  
Keon Heo ◽  
...  

Vitamin B2, also known as riboflavin, is essential for maintaining human health. The purpose of this study was to isolate novel lactic acid bacteria that overproduce vitamin B2 and to validate their potential as probiotics. In this study, Lactobacillus plantarum HY7715 (HY7715) was selected among lactic acid bacteria isolated from Kimchi. HY7715 showed a very high riboflavin-producing ability compared to the control strain due to the high expression of ribA, ribB, ribC, ribH, and ribG genes. HY7715 produced 34.5 ± 2.41 mg/L of riboflavin for 24 h without consuming riboflavin in the medium under optimal growth conditions. It was able to produce riboflavin in an in vitro model of the intestinal environment. In addition, when riboflavin deficiency was induced in mice through nutritional restriction, higher levels of riboflavin were detected in plasma and urine in the HY7715 administration group than in the control group. HY7715 showed high survival rate in simulated gastrointestinal conditions and had antibiotic resistance below the cutoff MIC value suggested by the European Food Safety Authority; moreover, it did not cause hemolysis. In conclusion, HY7715 could be considered a beneficial probiotic strain for human and animal applications, suggesting that it could be a new alternative to address riboflavin deficiency.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Eun Yeong Jang ◽  
Yejin Ahn ◽  
Hyung Joo Suh ◽  
Ki-Bae Hong ◽  
Kyungae Jo

Constipation is a chronic disease caused by infrequent, inadequate, and difficult bowel movements. The present study aimed to evaluate the potential laxative effect of maltooligosaccharide (MOS) on loperamide-induced constipation in a rat model. In vitro experiments were conducted to evaluate the effect of MOS on the growth of lactic acid bacteria. Moreover, to examine the effect of MOS administration on Sprague-Dawley (SD) rats with loperamide-induced constipation, the drinking water for the rats was supplemented with 10% or 15% of MOS for 14 days, and, thereafter, the improvement in constipation was assessed. For this, the rats were divided into five groups: normal (Nor), loperamide-induced constipated (Con), positive control (15% of dual-oligosaccharide (DuO-15)), 10% MOS treated (MOS-10), and 15% MOS-treated (MOS-15). In an in vitro test, MOS treatment promoted the growth of lactic acid bacteria except Lactobacillus bulgaricus. Treatment with higher MOS dose relieved constipation in rats by improving the fecal pellet and water content. Furthermore, in the high MOS dose group, the cecal short-chain fatty acid levels significantly increased compared to those in the control group (P<0.001). MOS treatment also improved the mucosal thickness as well as mucin secretion and increased the area of intestinal Cajal cells compared to that in the control group (P<0.001). These findings suggest that MOS relieves constipation and has beneficial effect on the gastrointestinal tract, and, therefore, it can be used as an ingredient in functional foods for treating constipation or improving intestinal health.


1970 ◽  
Vol 1 (1) ◽  
Author(s):  
TIAN Rui-rui

Objective: To investigate the effects of different concentrations of isorhamnetin on C6 rat glioma cells in vitro from January 2015 to June 2015. Methods: The blank control group, blank solvent control group and four concentration groups were used to observe the cell growth status under a microscope. MTT colorimetric assay was used to detect the effect of isorhamnetin on C6 glioma cells in vitro and the cell inhibition rate And survival rate were measured. The apoptotic and apoptotic rates were measured by flow cytometry in the treatment group and the control group. The relationship between the different concentrations of isorhamnetin and C6 glioma cell apoptosis was analyzed the total protein was extracted and the total AKT protein and Ser473 AKT protein content were detected by Western blotting. The rat model of glioma was constructed by SD rats.Five days of isorhamnetin was continuously fed and the plasma was detected by high-performance liquid chromatography,liver, brain tissue isorhamnetin content. 


2020 ◽  
Vol 13 (06) ◽  
pp. 2050022
Author(s):  
Xiaoyue Liang ◽  
Zhaohui Zou ◽  
Zheng Zou ◽  
Changyi Li ◽  
Xiaoxi Dong ◽  
...  

The main objective of this study is to evaluate the antibacterial effect of antibacterial photodynamic therapy (aPDT) on Streptococcus mutans (S. mutans) biofilm model in vitro. The selection of photosensitizers is the key step for the efficacy of photodynamic therapy (PDT). However, no studies have been conducted in the oral field to compare the functional characteristics and application effects of PDT mediated by various photosensitizers. In this research, the antibacterial effect of Methylene blue (MB)/650[Formula: see text]nm laser and Hematoporphyrin monomethyl ether (HMME)/532[Formula: see text]nm laser on S. mutans biofilm was compared under different energy densities to provide experimental reference for the clinical application of the two PDT. The yield of lactic acid was analyzed by Colony forming unit (CFU) and spectrophotometry, and the complete biofilm activity was measured by Confocal Laser Scanning Microscopy (CLSM) to evaluate the bactericidal effect on each group. Based on the results of CFU, the bacterial colonies formed by 30.4[Formula: see text]J/cm2 532[Formula: see text]nm MB-aPDT group and 30.4[Formula: see text]J/cm2 532[Formula: see text]nm HMME-aPDT group were significantly less than those in other groups, and the bacterial colonies in HMME-aPDT group were less than those in HMME-aPDT group. Lactic acid production in all treatment groups except the photosensitizer group was statistically lower than that in the normal saline control group. The activity of bacterial plaque biofilm was significantly decreased in the two groups treated with 30.4[Formula: see text]J/cm2 aPDT. Therefore, aPDT suitable for energy measurement can kill S. mutans plaque biofilm, and MB-aPDT is better than HMME-aPDT.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ying Ma ◽  
Shujuan Qu ◽  
Liangpeng Xu ◽  
Hongbo Lu ◽  
Baoguo Li

Abstract Background The primary aim of this study was to observe the effect of 5-ALA-mediated photodynamic therapy on oral squamous cell carcinoma in vitro. Methods SCC25 cells were divided into the observation group and the blank control group. Different concentrations of 5-ALA and SCC25 cells were co-incubated for different times, and the concentration of protoporphyrin IX was detected by flow cytometry. SCC25 cells were divided into the 5-ALA group (100 mg/L), the laser irradiation group alone, the 5-ALA plus laser irradiation group, and the blank control group (0 mg/L 5-ALA), and the methyl thiazolyl tetrazolium (MTT) solution method was used (each group was incubated for 4, 8 and 12 h in turn). The cell survival rate was calculated. Using annexin V-fluorescein isothiocyanate/propidium iodide method, the apoptosis of SCC25 cells was detected by flow cytometry. Results The level of protoporphyrin IX in SCC25 cells increased with increased concentrations of 5-ALA and length of incubation. However, after 12 h, protoporphyrin IX level in SCC25 cells was gradually stabilized, and similar effect was obtained with 100 mg/L or more 5-ALA, indicating that the level of protoporphyrin IX in SCC25 cells was determined by 5-ALA concentration and incubation time. 5-ALA plus laser irradiation exerted an inhibitory effect on the growth of SCC25 cells, which was highly associated with drug dose and incubation time. Compared with the control group, laser irradiation alone or 5-ALA alone had no effect on the apoptosis of SCC25 cells. Different concentrations of 5-ALA combined with laser irradiation showed a remarkable effect of apoptosis, and a higher apoptosis rate was seen with higher drug concentrations. Conclusion 5-ALA-mediated photodynamic therapy affects the growth of SCC25 cells in vitro, which may provide a new idea for the clinical treatment of oral squamous cell carcinoma.


2012 ◽  
Vol 56 (1) ◽  
pp. 21-25 ◽  
Author(s):  
Marek Selwet ◽  
Mariola Galbas ◽  
Piotr Dullin

Abstract The presented investigations were conducted on a group of 60 porkers of crossbreed Polish Landrace x Large White Polish. The animals were divided into two equal experimental groups. The control group (K) was fed diets without supplementation with probiotics, group (P) - diets with the addition of probiotic (0.2 kg t-1 feed). The aim of the study was to determine the effect of probiotic preparation on total numberof lactic acid rods from the Lactobacillus genus and those forming hydrogen oxide. The second part of experiment concerned the influence of probiotic preparation on the number, haemolytic ability and changes in drug resistance of Escherichia coli isolated from animal faeces. The significantly highest number of Lactobacillus sp. were determined in the saliva of porkers fed diets with the addition of probiotic, while the lowest in the control group. Lactobacillus sp. rods capable of forming hydrogen peroxide were isolated from 17 animals in group K and from three animals in group P. E. coli was determined in each examined sample of faeces. In groups K and P, counts of these bacteria were similar and did not differ statistically. High numbers of haemolytic isolates (haemolysis β) were found in faeces of animals fed diets with the addition of probiotic. Number and proportions of resistant isolates in groups K and P were different. Gentamicin was characterised by exceptionally high in vitro effectiveness. The used probiotic increased drug resistance of E. coli and increased frequency of incidence of haemolysis β.


2019 ◽  
Author(s):  
Leah Robert ◽  
David Gupta

AbstractThis report developed a novel method to observe the anti-tumor effect of HA nanoparticle carrier-mediated HepG2 cell vaccine transfected with hGM-CSF gene in vitro, and provide evidence for the clinical application of hGM-CSF gene-modified HepG2 cell vaccine. HA nanoparticle-mediated hGM-CSF gene transfection of HepG2 cells was used to prepare HepG2 cell vaccine transfected with GMCSF gene. Human PBMC were isolated by density gradient centrifugation and human PBMC were induced in vitro. The proliferative activity of PBMC and the killing effect on HepG2 cells were determined by WST-1 method. The positive expression rates of CD4+ and CD8+ were analyzed by flow cytometry, and the secretion of INF-γ was determined by ELISA. WST-1 results showed that the transgenic HepG2 vaccine induced PBMC proliferation, and its proliferation rate was better than that of wild-type vaccine. The induced PBMC had a higher killing rate against HepG2 than the wild-type vaccine group and each blank. In the control group, FCM results showed that the positive expression rates of CD4+ and CD8+ in the transgenic HepG2 vaccine group were higher than those in the wild-type vaccine group and each blank control group. The ELISA results showed that the IFN-γ content in the transgenic PBMC culture supernatant was 1989.76. +/− 254.21 pg/ml, higher than the wild-type vaccine group and each blank control group.


2021 ◽  
Author(s):  
Quntao Huang ◽  
Tian-Ming Niu ◽  
Bo-Shi Zou ◽  
Jun-Hong Wang ◽  
Jun-Hong Xin ◽  
...  

Abstract The African Classical Swine Fever Virus (ASFV) has spread severely all over the world. The lack of vaccines has dealt a heavy blow to the pig industry.In this study, the p14.5 protein encoded by the African swine fever virus was used as the antigen, and the p14.5 protein gene was expressed in vitro using the Lactobacillus expression system. Three new functional recombinant Lactobacillus plantarum((L. plantarum) were constructed and the p14.5 was successfully detected using western technology.Protein, fusion gene p14.5-IL-33-mouse(P14.5-IL-33-Mus) protein and CTA1-p14.5-DD protein expression.After oral immunization of SPF mice with recombinant lactic acid bacteria, flow cytometry and ELISA were used to detect that the differentiation and maturity of T, B, and DC cells of the mice were higher than those of the control group, and specific antibodies were produced. In contrast, the immune effect of the adjuvant group was stronger than that of the single antigen group, and the IL-33 adjuvant effect was stronger than that of the CTA1-DD adjuvant. This study provides effective data support for the prevention of African swine fever virus infection with new lactic acid bacteria preparations, and has certain innovative significance.


2007 ◽  
Vol 2 (1) ◽  
pp. 22
Author(s):  
Enok Sobariah ◽  
Ali Khomsan ◽  
Ingrid S. Surono

<p class="MsoNormal" style="margin: 0cm 12.45pt 6pt 17.85pt; text-align: justify;"><span style="font-size: 10pt;" lang="en-us" xml:lang="en-us">The aim of this study were  to identify the in-vitro tolerance of pro-biotic bacteria to acid and bile salt condition; and  to prove a hypothesis that the supplementation of oxygenated water has a positive effect on the body weight of rat and on viability of pro-biotic bacteria.  The first study was carried out at PAU Laboratory of Bogor Agricultural University, while the second study was conducted at Department of Community Nutrition of Bogor Agricultural University and Microbiology Laboratory of Indonesia Institute of Technology. Forty five rats aged 6 weeks were divided into three groups, i.e., control group without probiotic (a0), Lactobacillus casei Shirota (a1), and Lactobacillus IS-7257 (a2).  Each group (consisting of 5 rats each) has three different treatments, namely, control without oxygenated water (b0), 50 ppm oxygenated water (b2), and 80 ppm oxygenated water (b2). Oxygenated water was administered to the rats twice a day in the morning (3.25 ml) and afternoon (3.00 ml). Observation was carried out on the body  weight of the rats, fecal lactic acid bacteria, coliform, and anaerob bacteria by plate counting, for 4 periods, i.e, prior to the treatment (C0), after three-day treatment (C1), after seven-day treatment (C2), and on the 10<sup>th</sup> day treatment or three days after washed out period. The results indicated that probiotic bacteria are resistant to acid and bile acid condition. Oxygen concentration in water has a significant positive influence on the body weight of rats towards viability of probiotic bacteria (p-level &lt; 0.05).  The supplementation of  oxygenated water 50 ppm significantly increase the population of viable fecal lactic acid bacteria in L. casei Shirota and Lactobacillus IS-7257 groups after 3 and 7 days of treatment.  Lactobacillus IS-7257 gave better response than L. casei Shirota. The supplementation of oxygenated water 80 ppm significantly reduces the fecal coliform in-vivo in both L. casei Shirota and Lactobacillus IS-7257 groups (p-level &lt; 0.05).</span></p>


Sign in / Sign up

Export Citation Format

Share Document