scholarly journals In-silico investigation of curcumin drug-likeness, gene-targets and prognostic relevance of the targets in panels of human cancer cohorts

2021 ◽  
Vol 14 (1) ◽  
pp. 037-046
Author(s):  
David B Oshevire ◽  
Aishatu Mustapha ◽  
Blessing U. Alozieuwa ◽  
Hassana H. Badeggi ◽  
Abdulfatai Ismail ◽  
...  

Despite advancements in diagnostic and standard treatment modalities, cancer survival rate remains disappointing globally. It has however, been recognized that exploring the therapeutic properties of secondary metabolite from natural products may alleviate the problems of drug resistance and toxicity that besiege the conventional therapies, and hence improve the overall prognosis of cancer patient. To this end curcumin, a polyphenolic natural compound has been widely studied for it anticancer activities in in vitro and in vivo models. Computational technology has significantly improved the success rate of drug discovery and development, hence, it has become a widely explore tool in drug candidate identification. In this study we used computational approached to identify 12 genes that are potential druggable candidate for curcumin. The genes identified were found to be enriched in cancer and drug resistance associated signaling pathways. Interestingly, the top 3 identified genes; Microtubule-associated protein tau (MAPT), Toll-like receptor 9 (TLR9) and Tyrosyl-DNA phosphodiesterase 1 (TDP1) were observed to be over expressed in multiple cancer cohorts and were associated with poor prognoses of the patients. Curcumin has good physicochemical, bioavailability and ADMET properties. Importantly, it met the Lipinski's Rule of 5 for drug likeness and thus worthy of further in vitro and in vivo confirmation studies.

Science ◽  
2020 ◽  
Vol 368 (6495) ◽  
pp. 1127-1131 ◽  
Author(s):  
Arcadi Cipponi ◽  
David L. Goode ◽  
Justin Bedo ◽  
Mark J. McCabe ◽  
Marina Pajic ◽  
...  

In microorganisms, evolutionarily conserved mechanisms facilitate adaptation to harsh conditions through stress-induced mutagenesis (SIM). Analogous processes may underpin progression and therapeutic failure in human cancer. We describe SIM in multiple in vitro and in vivo models of human cancers under nongenotoxic drug selection, paradoxically enhancing adaptation at a competing intrinsic fitness cost. A genome-wide approach identified the mechanistic target of rapamycin (MTOR) as a stress-sensing rheostat mediating SIM across multiple cancer types and conditions. These observations are consistent with a two-phase model for drug resistance, in which an initially rapid expansion of genetic diversity is counterbalanced by an intrinsic fitness penalty, subsequently normalizing to complete adaptation under the new conditions. This model suggests synthetic lethal strategies to minimize resistance to anticancer therapy.


Dose-Response ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 155932582091418
Author(s):  
Saima Tariq ◽  
Syed Ali Raza Naqvi ◽  
Sumaira Naz ◽  
Muhammad Samee Mubarik ◽  
Muhammad Yaseen ◽  
...  

Thymoquinone (TQ) is a bioactive phytochemical isolated from Nigella sativa and has been investigated for biochemical and biological activities in both in vitro and in vivo models. It is best known for its anticancer activities. Thymoquinone accomplishes anticancer activities through targeting multiple cancer markers including PPAR-γ, PTEN, P53, P73, STAT3, and generation of reactive oxygen species at the cancer cell surface. The radiolabeling of TQ with γ- and β-emitter radionuclide could be used as cancer diagnostic or therapeutic radiopharmaceutical, respectively. In this study, we are reporting the radiolabeling of TQ with technetium-99m (99mTc), stability in saline and blood serum, internalization and externalization of 99mTc-TQ using rhabdomyosarcoma cancer cells line. The quality control study revealed more than 95% labeling yield and stable in blood serum up to 4 hours. In vitro internalization rate was recorded 27.08% ± 0.95% at 1 hour post 2 hours internalization period and comparatively slow externalization. The results of this study are quite encourging and could be investigated for further key preclinical parameters to enter phase I clinical trials.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 498
Author(s):  
Mariaevelina Alfieri ◽  
Antonietta Leone ◽  
Alfredo Ambrosone

Plants produce different types of nano and micro-sized vesicles. Observed for the first time in the 60s, plant nano and microvesicles (PDVs) and their biological role have been inexplicably under investigated for a long time. Proteomic and metabolomic approaches revealed that PDVs carry numerous proteins with antifungal and antimicrobial activity, as well as bioactive metabolites with high pharmaceutical interest. PDVs have also been shown to be also involved in the intercellular transfer of small non-coding RNAs such as microRNAs, suggesting fascinating mechanisms of long-distance gene regulation and horizontal transfer of regulatory RNAs and inter-kingdom communications. High loading capacity, intrinsic biological activities, biocompatibility, and easy permeabilization in cell compartments make plant-derived vesicles excellent natural or bioengineered nanotools for biomedical applications. Growing evidence indicates that PDVs may exert anti-inflammatory, anti-oxidant, and anticancer activities in different in vitro and in vivo models. In addition, clinical trials are currently in progress to test the effectiveness of plant EVs in reducing insulin resistance and in preventing side effects of chemotherapy treatments. In this review, we concisely introduce PDVs, discuss shortly their most important biological and physiological roles in plants and provide clues on the use and the bioengineering of plant nano and microvesicles to develop innovative therapeutic tools in nanomedicine, able to encompass the current drawbacks in the delivery systems in nutraceutical and pharmaceutical technology. Finally, we predict that the advent of intense research efforts on PDVs may disclose new frontiers in plant biotechnology applied to nanomedicine.


2020 ◽  
Vol 20 (1) ◽  
pp. 39-53 ◽  
Author(s):  
Tânia P. Almeida ◽  
Alice A. Ramos ◽  
Joana Ferreira ◽  
Amaya Azqueta ◽  
Eduardo Rocha

: Chronic Myeloid Leukemia (CML) represents 15-20% of all new cases of leukemia and is characterized by an uncontrolled proliferation of abnormal myeloid cells. Currently, the first-line of treatment involves Tyrosine Kinase Inhibitors (TKIs), which specifically inhibits the activity of the fusion protein BCR-ABL. However, resistance, mainly due to mutations, can occur. In the attempt to find more effective and less toxic therapies, several approaches are taken into consideration such as research of new anti-leukemic drugs and “combination chemotherapy” where different drugs that act by different mechanisms are used. Here, we reviewed the molecular mechanisms of CML, the main mechanisms of drug resistance and current strategies to enhance the therapeutic effect of TKIs in CML. Despite major advances in CML treatment, new, more potent anticancer drugs and with fewer side effects are needed. Marine organisms, and particularly seaweed, have a high diversity of bioactive compounds with some of them having anticancer activity in several in vitro and in vivo models. The state-of-art suggests that their use during cancer treatment may improve the outcome. We reviewed here the yet few data supporting anti-leukemic activity of some carotenoids and phlorotannins in some leukemia models. Also, strategies to overcome drug resistance are discussed, particularly the combination of conventional drugs with natural compounds.


2020 ◽  
Author(s):  
Feilun Cui ◽  
Zhipeng Xu ◽  
Yumei Lv ◽  
Jianpeng Hu

Abstract Background Prostate cancer (PCa) is the most common type of human cancer in males. However, the mechanisms underlying PCa tumorigenesis remained unclear.Methods The present study evaluated the expression levels of FAM64A in PCa by using 5 public datasets, including GSE8511, GSE45016, GSE55945, GSE38241 and GSE17951. Then, in vivo and in vitro assays were conducted to detect the biological functions of FAM64A in PCa. Microarray and bioinformatic analysis were carried out to detect the downstream targets and pathways regulated by FAM64A.Results In this study, we for first time demonstrate FAM64A as a biomarker for PCa. FAM64A was found to be overexpressed in PCa compared to normal samples. Higher FAM64A expression were found in Gleason score (GS) ≥ 8 PCa compared to GS < 8 PCa samples, in N1 staging compared to N1 staging PCa samples, and T3/4 staging compared to T1 staging PCa. Moreover, higher FAM64A expression was correlated to shorter survival time in PCa. Knockdown of FAM64A significantly suppressed PCa cell proliferation and colony formation, however, induced PCa apoptosis in vivo and in vitro. Bioinformatics analysis combined with microarray analysis revealed FAM64A played crucial roles in regulating multiple cancer related pathways, including cell-matrix adhesion and cAMP signaling pathway. Conclusions These results showed FAM64A could serve as a novel biomarker for PCa and will be helpful to understand the underlying FAM64A -related molecular mechanisms in the progression of PCa.


2019 ◽  
Vol 18 (10) ◽  
pp. 1469-1481 ◽  
Author(s):  
Raphaël Dutour ◽  
René Maltais ◽  
Martin Perreault ◽  
Jenny Roy ◽  
Donald Poirier

Background: RM-133 belongs to a new family of aminosteroid derivatives demonstrating interesting anticancer properties, as confirmed in vivo in four mouse cancer xenograft models. However, the metabolic stability of RM-133 needs to be improved. After investigation, the replacement of its androstane scaffold by a more stable estrane scaffold led to the development of the mestranol derivative RM-581. Methods: Using solid-phase strategy involving five steps, we quickly synthesized a series of RM-581 analogs using the recently-developed diethylsilylacetylenic linker. To establish structure-activity relationships, we then investigated their antiproliferative potency on a panel of cancer cell lines from various cancers (breast, prostate, ovarian and pancreatic). Results: Some of the mestranol derivatives have shown in vitro anticancer activities that are close to, or better than, those observed for RM-581. Compound 23, a mestranol derivative having a ((3,5-dimethylbenzoyl)- L-prolyl)piperazine side chain at position C2, was found to be active as an antiproliferative agent (IC50 = 0.38 ± 0.34 to 3.17 ± 0.10 µM) and to be twice as active as RM-581 on LNCaP, PC-3, MCF-7, PANC-1 and OVCAR-3 cancer cells (IC50 = 0.56 ± 0.30, 0.89 ± 0.63, 1.36 ± 0.31, 2.47 ± 0.91 and 3.17 ± 0.10 µM, respectively). Conclusion: Easily synthesized in good yields by both solid-phase organic synthesis and classic solution-phase chemistry, promising compound 23 could be used as an antiproliferative agent on a variety of cancers, notably pancreatic and ovarian cancers, both having very bad prognoses.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 918-918
Author(s):  
Deepika Sharma Das ◽  
Arghya Ray ◽  
Yan Song ◽  
Paul Richardson ◽  
Bryan Oronsky ◽  
...  

Abstract Introduction The bone marrow (BM) microenvironment confers growth, survival, and drug resistance in multiple myeloma (MM) cells (Chauhan et al, Cancer Cell 2009, 16:309-323) BM hypoxia (low oxygenation) plays a role in promoting MM cell survival, drug resistance, migration, and metastasis. Novel therapies that selectively target the MM cell in its hypoxic BM milieu may therefore overcome conventional drug resistance. Recent studies led to the development of a novel aerospace industry-derived Phase 2 molecule RRx-001 with hypoxia-selective epigenetic and NO-donating properties. A Phase I clinical trial demonstrated promising evidence of anti-tumor activity in a heavily pretreated population with no dose-limiting toxicities (Reid et al. J Clin Oncol 32:5s, 2014 suppl; abstr 2578, Reid et al, Lancet Oncology, in press). RRx-001 is currently under investigation in multiple Phase II clinical trials. Here we examined both the mechanism of action and anti-MM activity of RRx-001 using in vitro and in vivo models of MM. Methods Cell viability, apoptosis, and migration assays were performed using MTT, Annexin V staining, and transwell Inserts, respectively. ROS and NO generation was measured as previously described (Chauhan et al., Blood, 2004, 104:2458). Synergistic anti-MM activity was assessed by isobologram analysisusing "CalcuSyn" software program. In vitro angiogenesis was assessed using matrigel capillary-like tube formation assays. DNMT1 activity was measured using DNMT1 assay kit. USP7 siRNA was purchased from Dharmacon. CB-17 SCID-mice were subcutaneously inoculated with MM.1S cells as previously described (Chauhan et al., Cancer Cell 2012, 11:345-358). Statistical significance of data was determined using a Student's t test. RRx-001 was obtained from EpicentRx, CA, USA; USP7 inhibitor P5091, bortezomib, SAHA, and pomalidomide were purchased from Selleck chemicals, USA. Results Treatment of MM cell lines (MM.1S, MM.1R, RPMI-8226, OPM2, H929, Dox-40 ARP-1, KMS-11, ANBL6.WT, ANBL6.BR, and LR5) and primary patient cells for 48h significantly decreased their viability (IC50 range 1.25nM to 2.5nM) (p < 0.05; n=3) without markedly affecting PBMCs from normal healthy donors, suggesting specific anti-MM activity and a favorable therapeutic index for RRx-001. Tumor cells from 3 of 5 patients were obtained from patients whose disease was progressing while on bortezomib, dexamethasone, and lenalidomide therapies. Moreover, RRx-001 inhibits proliferation of MM cells, even in the presence of BM stromal cells. Washout experiments showed that a short time (3h) exposure of MM cells to RRx-001 triggered irreversible cell death. RRx-001-triggered apoptosis is associated with: 1) induction of DNA damage response signaling via ATM/p53/gH2AX axis; 2) activation of caspases mediating both intrinsic and extrinsic apoptotic pathways; 3) increase in oxidative stress through release of ROS and generation of NO; and 4) decrease in DNMT1 activity and global methylation levels. Furthermore, RRx-001 blocked migration of MM cells and angiogenesis. Deubiqyitylating enzyme USP7 stimulates DNMT1 enzymatic activity. USP7-siRNA reduced DNMT1 activity and decreased MM cell viability. Importantly, the combination of USP7 inhibitor P5091 and RRx-001 triggered synergistic anti-MM activity associated with a robust decrease in DNMT1 activity, as well as increased degradation of USP7 substrate MDM2 and induction of downstream p21/p53 signaling axis. In vivo studies using a subcutaneous human MM xenograft model shows that RRx-001 is well tolerated, inhibits tumor growth, and enhances survival. Finally, combining RRx-001 with pomalidomide, bortezomib or SAHA induces synergistic anti-MM activity in p53-WT and p53-null MM cells, and overcomes drug resistance. Conclusion Our preclinical studies demonstrate that RRx-001, a ROS-mediated epigenetic inhibitor with anti-angiogenic properties selectively targets MM cells in vivo and synergizes with existing anti-MM agents to overcome therapeutic resistance. Our data also suggest a potential mechanism of action for RRx-001-induced epigenetic changes via USP7-DNMT1 complex and downstream p53/p21 signaling cascade. Collectively, these results provide a rationale for rapid translation of RRx-001, either alone or in combination, in a clinical trial of relapsed refractory MM. Disclosures Oronsky: epicentrx: Employment. Scicinski:epicentrx: Employment. Chauhan:Stemline Therapeutics: Consultancy.


2019 ◽  
Vol 20 (13) ◽  
pp. 3218 ◽  
Author(s):  
Kuan-Lin Kuo ◽  
Shing-Hwa Liu ◽  
Wei-Chou Lin ◽  
Fu-Shun Hsu ◽  
Po-Ming Chow ◽  
...  

Cisplatin-based chemotherapy is the primary treatment for metastatic bladder urothelial carcinoma (UC). Most patients inevitably encounter drug resistance and resultant disease relapse. Reduced apoptosis plays a critical role in chemoresistance. Trifluoperazine (TFP), an antipsychotic agent, has demonstrated antitumor effects on various cancers. This study investigated the efficacy of TFP in inhibiting cisplatin-resistant bladder UC and explored the underlying mechanism. Our results revealed that cisplatin-resistant UC cells (T24/R) upregulated the antiapoptotic factor, B-cell lymphoma-extra large (Bcl-xL). Knockdown of Bcl-xL by siRNA resensitized cisplatin-resistant cells to the cisplatin cytotoxic effect. TFP (10–45 μM) alone elicited dose-dependent cytotoxicity, apoptosis, and G0/G1 arrest on T24/R cells. Co-treatment of TFP potentiated cisplatin-induced cytotoxicity in T24/R cells. The phenomenon that TFP alleviated cisplatin resistance to T24/R was accompanied with concurrent suppression of Bcl-xL. In vivo models confirmed that TFP alone effectively suppressed the T24/R xenograft in nude mice. TFP co-treatment enhanced the antitumor effect of cisplatin on the T24/R xenograft. Our results demonstrated that TFP effectively inhibited cisplatin-resistant UCs and circumvented cisplatin resistance with concurrent Bcl-xL downregulation. These findings provide a promising insight to develop a therapeutic strategy for chemoresistant UCs.


2014 ◽  
Vol 21 (3) ◽  
pp. R183-R194 ◽  
Author(s):  
Yevgeniya Kushchayeva ◽  
Kirk Jensen ◽  
Kenneth D Burman ◽  
Vasyl Vasko

Repositioning of established non-cancer pharmacotherapeutic agents with well-known activity and side-effect profiles is a promising avenue for the development of new treatment modalities for multiple cancer types. We have analyzed some of the medications with mechanism of action that may have relevance to thyroid cancer (TC). Experimentalin vitroandin vivoevidences, as well as results of clinical studies, have indicated that molecular targets for medications currently available for the treatment of mood disorders, sexually transmitted diseases, metabolic disorders, and diabetes may be active and relevant in TC. For instance, the derivatives of cannabis and an anti-diabetic agent, metformin, both are able to inhibit ERK, which is commonly activated in TC cells. We present here several examples of well-known medications that have the potential to become new therapeutics for patients with TC. Repositioning of established medications for the treatment of TC could broaden the scope of current therapeutic strategies. These diverse treatment choices could allow physicians to provide an individualized approach to optimize treatment for patients with TC.


2010 ◽  
Vol 54 (6) ◽  
pp. 2603-2610 ◽  
Author(s):  
Alexis Nzila ◽  
Matthias Rottmann ◽  
Penchit Chitnumsub ◽  
Stevens M. Kiara ◽  
Sumalee Kamchonwongpaisan ◽  
...  

ABSTRACT Drug resistance against dihydrofolate reductase (DHFR) inhibitors—such as pyrimethamine (PM)—has now spread to almost all regions where malaria is endemic, rendering antifolate-based malaria treatments highly ineffective. We have previously shown that the di-amino quinazoline QN254 [5-chloro-N′6′-(2,5-dimethoxy-benzyl)-quinazoline-2,4,6-triamine] is active against the highly PM-resistant Plasmodium falciparum V1S strain, suggesting that QN254 could be used to treat malaria in regions with a high prevalence of antifolate resistance. Here, we further demonstrate that QN254 is highly active against Plasmodium falciparum clinical isolates, displaying various levels of antifolate drug resistance, and we provide biochemical and structural evidence that QN254 binds and inhibits the function of both the wild-type and the quadruple-mutant (V1S) forms of the DHFR enzyme. In addition, we have assessed QN254 oral bioavailability, efficacy, and safety in vivo. The compound displays favorable pharmacokinetic properties after oral administration in rodents. The drug was remarkably efficacious against Plasmodium berghei and could fully cure infected mice with three daily oral doses of 30 mg/kg. In the course of these efficacy studies, we have uncovered some dose limiting toxicity at higher doses that was confirmed in rats. Thus, despite its relative in vitro selectivity toward the Plasmodium DHFR enzyme, QN254 does not show the adequate therapeutic index to justify its further development as a single agent.


Sign in / Sign up

Export Citation Format

Share Document