scholarly journals Analysis of the genotype × environment interactions and assessment of the adaptability potential in barley under the conditions of the Northern Trans-Urals

2021 ◽  
Vol 182 (3) ◽  
pp. 63-73
Author(s):  
N. V. Tetyannikov ◽  
N. A. Bome

Background. Crop yield is a compound and complex character in breeding programs. A stable high yield is determined by the genotype, environmental impacts, and their interaction. A comprehensive assessment of cultivars based on their adaptability, plasticity and stability makes it possible to select among the studied assortment the most promising, potentially high-yielding and environmentally flexible plant forms adaptable to a wide range of environmental conditions.Materials and methods. Evaluation of 146 accessions representing two-row (subsp. distichon L.) and six-row (subsp. vulgare) barleys (Hordeum vulgare L.) was performed in 2015–2017 to measure the adaptability, stability, plasticity and homeostasis of barley yield. Experimental data were statistically processed using the methods of the two-way ANOVA and correlation analysis.Results and conclusion. It was established that barley yield formation was almost equally determined by the genotype (34.3%), environmental conditions (31.9%), and genotype × environment interactions (33,7%), showing that the tested barleys were relatively well adaptable to climate changes in the Northern Trans-Urals. Barley yield was more closely associated with grain weight per plant (r = 0.72) and the number of productive stems per area unit (r = 0.63), and to a lesser extent with seed germination rate in the field (r = 0.39) and 1000 grain weight (r = 0.37). Strong correlations were observed for the yield with the adaptability coefficient (r = 0.94), environmental plasticity index (r = 1.00), and compensatory capacity (r = 0.96). Cvs. ‘Abyssinian 14’ (k-23504, var. pallidum) and ‘Kharkovsky 70’ (k-23683, var. nutans) exhibited a set of adaptive and productive properties.

2013 ◽  
Vol 152 (6) ◽  
pp. 873-884 ◽  
Author(s):  
R. MOHAMMADI

SUMMARYRainfall and temperature are unpredictable in Mediterranean environments, which results in inconsistent environmental conditions for crop growth and a critical source of uncertainty for farmers and growers. The objectives of the present study were to: (i) quantify and compare the plasticity of durum breeding lines, a modern cultivar and landraces on the basis of yield and agronomic traits and (ii) study associations between plasticity of yield and plasticity of agronomic and phenological traits. Plasticity was quantified using linear models for 11 durum breeding lines, one modern cultivar and two landraces grown in 21 diversified environments. The results showed that the effects due to environment, genotype and genotype×environment (G×E) interaction were significant, which indicates the existence of differences among genotypes for plasticity. Yield ranged from 1939 to 2419 kg/ha across environments and the range of plasticity was 0·66–1·13. The breeding lines and the modern cultivar had higher grain yields compared with the landraces at the same level of plasticity. The landraces with below-average plasticity in yield were characterized as tall in stature and late in heading and maturity, whereas the breeding lines and modern cultivar with above-average plasticity in yield were early in heading and maturity, semi-dwarf and high-yielding, which indicates the success in breeding the materials for unpredictable environmental conditions. In conclusion, yield plasticity was associated with yield improvement and high yield plasticity tends to associate with earliness, shorter plants and low grain weight.


2020 ◽  
Author(s):  
Hiroki Saito ◽  
Y. Fukuta ◽  
Mitsuhiro Obara ◽  
Asami Tomita ◽  
Tsutomu Ishimaru ◽  
...  

Abstract Background: Harvest index (HI) is a measure of the biological success of forming harvestable products. However, our understanding of the genetic basis of HI in rice (Oryza sativa L.) is limited, because it is a complex trait consisting of various yield-related traits and physiological attributes. YTH183 is a high yielding line with large panicles and high HI derived from a cross between the Indica Group variety IR 64 and the NPT line IR 69093-41-2-3-2 (YP5).Results: Here, we detected two novel QTLs for HI, designated qHI5.1 on chromosome 5 and qHI8.1 on chromosome 8. The YTH183 allele at qHI5.1 contributed to wide grain, resulting in heavy grain weight and panicle weight, and was consistently effective under the different environmental conditions of subtropical (Ishigaki) and temperate (Tsukuba) regions. Genetic polymorphism revealed that qHI5.1 was identical to GSE5/GW5, which is known to control the grain weight. On the other hand, although qHI8.1 functioned additively with qHI5.1 for higher HI, it did not show any significant effect on grain or panicle weight. In addition, its effects on HI were shown only in the first seasons at Ishigaki but not at Tsukuba or in the second season at Ishigaki. Conclusion: Our results indicate that qHI5.1 controls the grain size, regardless of whether environmental conditions are of subtropical or temperate regions, while qHI8.1 might be involved in controlling the physiological processes of source ability or the translocation of photosynthesis products from vegetative organs to grains depending on environmental conditions during the maturing stage. These QTLs will be useful genetic resources for future breeding programs to break through the ceiling of maximum yield in Indica Group varieties.


2020 ◽  
Author(s):  
Hiroki Saito ◽  
Y. Fukuta ◽  
Mitsuhiro Obara ◽  
Asami Tomita ◽  
Tsutomu Ishimaru ◽  
...  

Abstract Background Harvest index (HI) is a measure of the biological success of forming harvestable products. However, our understanding of the genetic basis of HI in rice (Oryza sativa L.) is limited, because it is a complex trait consisting of various yield-related traits and physiological attributes. YTH183 is a high yielding line with large panicles and high HI derived from a cross between the Indica Group variety IR 64 and the NPT line IR 69093-41-2-3-2 (YP5).Results Here, we detected two novel QTLs for HI, designated qHI5.1 on chromosome 5 and qHI8.1 on chromosome 8 by using 155 recombinant inbred lines (RILs) derived from the cross between IR 64 and YTH183. The YTH183 allele at qHI5.1 contributed to wide grain, resulting in heavy grain weight and panicle weight, and was consistently effective under the different environmental conditions of subtropical (Ishigaki) and temperate (Tsukuba) regions. Genetic polymorphism revealed that qHI5.1 was identical to GSE5/GW5, which is known to control the grain weight. On the other hand, although qHI8.1 functioned additively with qHI5.1 for higher HI, it did not show any significant effect on grain or panicle weight. In addition, its effects on HI were shown only in the first seasons at Ishigaki but not at Tsukuba or in the second season at Ishigaki. Conclusion Our results indicate that qHI5.1 controls the grain size, regardless of whether environmental conditions are of subtropical or temperate regions, while qHI8.1 might be involved in controlling the physiological processes of source ability or the translocation of photosynthesis products from vegetative organs to grains depending on environmental conditions during the maturing stage. These QTLs will be useful genetic resources for future breeding programs to break through the ceiling of maximum yield in Indica Group varieties.


Weed Science ◽  
2012 ◽  
Vol 60 (4) ◽  
pp. 558-563 ◽  
Author(s):  
Neha Rana ◽  
Barton J. Wilder ◽  
Brent A. Sellers ◽  
Jason A. Ferrell ◽  
Gregory E. MacDonald

Smutgrass is an invasive warm-season perennial bunch-type grass native to tropical Asia. The two varieties of smutgrass prevalent in Florida are small smutgrass and giant smutgrass. Laboratory seed germination experiments were conducted on both smutgrass varieties to determine the effect of various environmental factors on germination and emergence. The average germination rate for both varieties was 88% at 30/20 C day/night temperatures. Seed germination for both varieties was greater under simulated temperature flux than at constant temperatures. Seed of both varieties germinated at four simulated Florida temperature fluxes (22/11, 27/15, 33/24, and 29/19 C day/night), although the germination of small smutgrass and giant smutgrass was reduced at 33/24 and 22/11 C, respectively. Germination of small and giant smutgrass under dark conditions was 27 and 53%, respectively. Both smutgrass varieties germinated over a wide range of pH values. Small and giant smutgrass germination was inhibited at water potentials below −0.2 MPa and when small smutgrass seed was placed below the soil surface. Emergence of giant smutgrass seed did not occur below 3 cm. Both smutgrass varieties germinated over a broad range of environmental conditions, indicating their capability of year-round germination; however, germination is only likely to occur under field conditions during the summer growing season when rainfall is prevalent. These results indicate that both species have the ability to germinate over a wide range of environmental conditions but that germination is inhibited by moisture stress and depth of burial. Considering that giant smutgrass prefers higher temperatures than small smutgrass, the advent of rainfall from June through September is conducive for germination. Practices that focus on the germination pattern of smutgrass could lead to better long-term management of smutgrass in Florida.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hiroki Saito ◽  
Yoshimichi Fukuta ◽  
Mitsuhiro Obara ◽  
Asami Tomita ◽  
Tsutomu Ishimaru ◽  
...  

Abstract Background The harvest index (HI) is a measure of the biological success of forming harvestable products. However, our understanding of the genetic basis of HI in rice (Oryza sativa L.) is limited, because it is a complex trait consisting of various yield-related traits and physiological attributes. YTH183 is a high-yielding line with large panicles and high HI derived from a cross between the Indica Group variety IR 64 and the NPT line IR 69093-41-2-3-2 (YP5). Results Here, we detected two novel QTLs for HI, designated qHI5.1 on chromosome 5 and qHI8.1 on chromosome 8, by using 155 recombinant inbred lines (RILs) derived from the cross between IR 64 and YTH183. The YTH183 allele at qHI5.1 contributed to a wide grain, resulting in heavy grain weight and panicle weight, and was consistently effective under the different environmental conditions of subtropical (Ishigaki) and temperate (Tsukuba) regions. Genetic polymorphism revealed that qHI5.1 was identical to GSE5/GW5, which is known to control the grain weight. On the other hand, although qHI8.1 functioned additively with qHI5.1 for higher HI, it did not show any significant effect on grain or panicle weight. In addition, its effects on HI were shown only in the first seasons at Ishigaki but not at Tsukuba or in the second season at Ishigaki. Conclusion Our results indicate that qHI5.1 controls the grain size, regardless of whether environmental conditions are of subtropical or temperate regions, while qHI8.1 might be involved in controlling the physiological processes of source ability or the translocation of photosynthesis products from vegetative organs to grains depending on environmental conditions during the maturing stage. These QTLs will be useful genetic resources for future breeding programs to break through the ceiling of maximum yield in Indica Group varieties.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2512
Author(s):  
Salah El-Hendawy ◽  
Nasser Al-Suhaibani ◽  
Muhammad Mubushar ◽  
Muhammad Usman Tahir ◽  
Yahya Refay ◽  
...  

The incorporation of stress tolerance indices (STIs) with the early estimation of grain yield (GY) in an expeditious and nondestructive manner can enable breeders for ensuring the success of genotype development for a wide range of environmental conditions. In this study, the relative performance of GY for sixty-four spring wheat germplasm under the control and 15.0 dS m−1 NaCl were compared through different STIs, and the ability of a hyperspectral reflectance tool for the early estimation of GY and STIs was assessed using twenty spectral reflectance indices (SRIs; 10 vegetation SRIs and 10 water SRIs). The results showed that salinity treatments, genotypes, and their interactions had significant effects on the GY and nearly all SRIs. Significant genotypic variations were also observed for all STIs. Based on the GY under the control (GYc) and salinity (GYs) conditions and all STIs, the tested genotypes were classified into three salinity tolerance groups (salt-tolerant, salt-sensitive, and moderately salt-tolerant groups). Most vegetation and water SRIs showed strong relationships with the GYc, stress tolerance index (STI), and geometric mean productivity (GMP); moderate relationships with GYs and sometimes with the tolerance index (TOL); and weak relationships with the yield stability index (YSI) and stress susceptibility index (SSI). Obvious differences in the spectral reflectance curves were found among the three salinity tolerance groups under the control and salinity conditions. Stepwise multiple linear regressions identified three SRIs from each vegetation and water SRI as the most influential indices that contributed the most variation in the GY. These SRIs were much more effective in estimating the GYc (R2 = 0.64 − 0.79) than GYs (R2 = 0.38 − 0.47). They also provided a much accurate estimation of the GYc and GYs for the moderately salt-tolerant genotype group; YSI, SSI, and TOL for the salt-sensitive genotypes group; and STI and GMP for all the three salinity tolerance groups. Overall, the results of this study highlight the potential of using a hyperspectral reflectance tool in breeding programs for phenotyping a sufficient number of genotypes under a wide range of environmental conditions in a cost-effective, noninvasive, and expeditious manner. This will aid in accelerating the development of genotypes for salinity conditions in breeding programs.


2021 ◽  
Author(s):  
Hiroki Saito ◽  
Y. Fukuta ◽  
Mitsuhiro Obara ◽  
Asami Tomita ◽  
Tsutomu Ishimaru ◽  
...  

Abstract Background The harvest index (HI) is a measure of the biological success of forming harvestable products. However, our understanding of the genetic basis of HI in rice (Oryza sativa L.) is limited, because it is a complex trait consisting of various yield-related traits and physiological attributes. YTH183 is a high-yielding line with large panicles and high HI derived from a cross between the Indica Group variety IR 64 and the NPT line IR 69093-41-2-3-2 (YP5).Results Here, we detected two novel QTLs for HI, designated qHI5.1 on chromosome 5 and qHI8.1 on chromosome 8, by using 155 recombinant inbred lines (RILs) derived from the cross between IR 64 and YTH183. The YTH183 allele at qHI5.1 contributed to a wide grain, resulting in heavy grain weight and panicle weight, and was consistently effective under the different environmental conditions of subtropical (Ishigaki) and temperate (Tsukuba) regions. Genetic polymorphism revealed that qHI5.1 was identical to GSE5/GW5, which is known to control the grain weight. On the other hand, although qHI8.1 functioned additively with qHI5.1 for higher HI, it did not show any significant effect on grain or panicle weight. In addition, its effects on HI were shown only in the first seasons at Ishigaki but not at Tsukuba or in the second season at Ishigaki. Conclusion Our results indicate that qHI5.1 controls the grain size, regardless of whether environmental conditions are of subtropical or temperate regions, while qHI8.1 might be involved in controlling the physiological processes of source ability or the translocation of photosynthesis products from vegetative organs to grains depending on environmental conditions during the maturing stage. These QTLs will be useful genetic resources for future breeding programs to break through the ceiling of maximum yield in Indica Group varieties.


Author(s):  
Kathryn Kellett ◽  
Brendan M. Duggan ◽  
Michael Gilson

We have described simple, high-yield, protocols, which require only commonly accessible equipment, to synthesize a wide range of β-CD derivatives mono-substituted at the secondary face. These derivatives may be useful in their own right, and they are also scaffolds for further modification, and examples of the far broader array of derivatives that may be accessed by these procedures.


1993 ◽  
Vol 58 (12) ◽  
pp. 2924-2935 ◽  
Author(s):  
Jane H. Jones ◽  
Bohumil Štíbr ◽  
John D. Kennedy ◽  
Mark Thornton-Pett

Thermolysis of [8,8-(PMe2Ph)2-nido-8,7-PtCB9H11] in boiling toluene solution results in an elimination of the platinum centre and cluster closure to give the ten-vertex closo species [6-(PMe2Ph)-closo-1-CB9H9] in 85% yield as a colourles air stable solid. The product is characterized by NMR spectroscopy and single-crystal X-ray diffraction analysis. Crystals (from hexane-dichloromethane) are monoclinic, space group P21/c, with a = 903.20(9), b = 1 481.86(11), c = 2 320.0(2) pm, β = 97.860(7)° and Z = 8, and the structure has been refined to R(Rw) = 0.045(0.051) for 3 281 observed reflections with Fo > 2.0σ(Fo). The clean high-yield elimination of a metal centre from a polyhedral metallaborane or metallaheteroborane species is very rare.


2021 ◽  
Vol 13 (15) ◽  
pp. 8247
Author(s):  
Dimitrios N. Vlachostergios ◽  
Christos Noulas ◽  
Anastasia Kargiotidou ◽  
Dimitrios Baxevanos ◽  
Evangelia Tigka ◽  
...  

Lentil is a versatile and profitable pulse crop with high nutritional food and feed values. The objectives of the study were to determine suitable locations for high yield and quality in terms of production and/or breeding, and to identify promising genotypes. For this reason, five lentil genotypes were evaluated in a multi-location network consisting of ten diverse sites for two consecutive growing seasons, for seed yield (SY), other agronomic traits, crude protein (CP), cooking time (CT) and crude protein yield (CPY). A significant diversification and specialization of the locations was identified with regards to SY, CP, CT and CPY. Different locations showed optimal values for each trait. Locations E4 and E3, followed by E10, were “ideal” for SY; locations E1, E3 and E7 were ideal for high CP; and the “ideal” locations for CT were E3 and E5, followed by E2. Therefore, the scope of the cultivation determined the optimum locations for lentil cultivation. The GGE-biplot analysis revealed different discriminating abilities and representativeness among the locations for the identification of the most productive and stable genotypes. Location E3 (Orestiada, Region of Thrace) was recognized as being optimal for lentil breeding, as it was the “ideal” or close to “ideal” for the selection of superior genotypes for SY, CP, CT and CPY. Adaptable genotypes (cv. Dimitra, Samos) showed a high SY along with excellent values for CP, CT and CPY, and are suggested either for cultivation in many regions or to be exploited in breeding programs.


Sign in / Sign up

Export Citation Format

Share Document