scholarly journals METHODS OF DISINFECTION OF MANURE AND MANURE EFFLUENTS

2020 ◽  
pp. 465-470
Author(s):  
Hutoryanina ◽  
Dumbadze ◽  
Dimidova

The problem of environmental pollution has now acquired global significance. Helminth eggs in liquid manure laid in open-type sedimentation tanks in October-November, remain viable for 12 months or more, and in spring-summer manure for 4–5 months. Therefore, uninfected liquid manure in both winter and summer poses a serious threat of contamination of reservoirs, soil, groundwater, feed and pastures with dangerous pathogens for humans and animals. This circumstance makes it necessary to carry out disinfestation of manure of all categories. Based on the above, the purpose of the work was to analyze existing methods of manure disinfection and manure effluents. All methods of deworming (disinvasion) of manure and its fractions can be divided into three groups: biological, physical and chemical. It is generally recognized that biological methods for decomposing organic waste are considered environmentally acceptable and cost-effective. Some of the analyzed physical and chemical methods also have a certain effectiveness of disinfection. When using these groups of disinfectants, constant monitoring and compliance with technological parameters is necessary, as well as the norms for the consumption of disinfectants and the exposure time must be observed.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ram Prasad

Nanobiotechnology is emerging as a field of applied biological science and nanotechnology. Synthesis of nanoparticles is done by various physical and chemical methods but the biological methods are relatively simple, cost-effective, nontoxic, and environmentally friendly methods. The present review focuses on the synthesis of nanoparticles with special emphasis on the use of plants parts for the synthesis process, its applications, and future prospectus.


Author(s):  
Geetanjali Singh ◽  
Pramod Kumar Sharma ◽  
Rishabha Malviya

Aim/Objective: The author writes the manuscript by reviewing the literatures related to the biomedical application of metallic nanoparticles. The term metal nanoparticles are used to describe the nanosized metals with the dimension within the size range of 1-100 nm. Methods: The preparation of metallic nanoparticles and their application is an influential area for research. Among various physical and chemical methods (viz. chemical reduction, thermal decomposition, etc.) for synthesizing silver nanoparticles, biological methods have been suggested as possible eco-friendly alternatives. The synthesis of metallic nanoparticles is having many problems inclusive of solvent toxicity, the formation of hazardous byproducts and consumption of energy. So it is important to design eco-friendly benign procedures for the synthesis of metallic nanoparticles. Results: From the literature survey, we concluded that metallic nanoparticles have applications in the treatment of different diseases. Metallic nanoparticles are having a great advantage in the detection of cancer, diagnosis, and therapy. And it can also have properties such as antifungal, antibacterial, anti-inflammatory, antiviral and anti-angiogenic. Conclusion: In this review, recent upcoming advancement of biomedical application of nanotechnology and their future challenges has been discussed.


Author(s):  
LATIF MS ◽  
ABBAS S ◽  
KORMIN F ◽  
MUSTAFA MK

The use of metal nanoparticles (MNPs) in various fields is increasing day-by-day leading to a genuine concern about the issues related to their environmental and biological safety. The major approaches for the synthesis of NPs include physical and chemical methods which are expensive and hazardous to health in addition to being toxic to the environment. This review highlights the potential of plant extracts to carry out the synthesis of MNPs with a special emphasis on the role of flavonoids in nanosynthesis. This green and clean approach have been actively utilized in recent years as an alternative to conventional hazardous approaches. It has proved as cost-effective, non-toxic, less time and labor consuming, efficient, and eco-friendly method for the synthesis of MNPs with specific biological actions. This review also focuses on the role of polyphenols, including the flavonoids as bioreductants of metal salts for the synthesis of NPs along with their biomedical applications. Various examples of the MNPs, along with their biological actions, have also been summarized.


2019 ◽  
Vol 25 (24) ◽  
pp. 2650-2660 ◽  
Author(s):  
Rajasree Shanmuganathan ◽  
Indira Karuppusamy ◽  
Muthupandian Saravanan ◽  
Harshiny Muthukumar ◽  
Kumar Ponnuchamy ◽  
...  

Generally, silver is considered as a noble metal used for treating burn wound infections, open wounds and cuts. However, the emerging nanotechnology has made a remarkable impact by converting metallic silver into silver nanoparticles (AgNPs) for better applications. The advancement in technology has improved the synthesis of NPs using biological method instead of physical and chemical methods. Nonetheless, synthesizing AgNPs using biological sources is ecofriendly and cost effective. Till date, AgNPs are widely used as antibacterial agents; therefore, a novel idea is needed for the successful use of AgNPs as therapeutic agents to uncertain diseases and infections. In biomedicine, AgNPs possess significant advantages due to their physical and chemical versatility. Indeed, the toxicity concerns regarding AgNPs have created the need for non-toxic and ecofriendly approaches to produce AgNPs. The applications of AgNPs in nanogels, nanosolutions, silver based dressings and coating over medical devices are under progress. Still, an improvised version of AgNPs for extended applications in an ecofriendly manner is the need of the hour. Therefore, the present review emphasizes the synthesis methods, modes of action under dissipative conditions and the various biomedical applications of AgNPs in detail.


Author(s):  
Mariana Marinescu ◽  
M. Dumitru ◽  
Anca Lacatusu

The exploitation of petroleum has generated various sources of pollution in soil. In order to resolve this problem, several techniques have been developed. Physical and chemical methods are the most widely methods used for land treatment of oil polluted soils. These methods are expensive, ineffective and could cause a lot of damages on soil. The biological methods are not expensive and do not cause changes in the soil physical and chemical characteristics. Bioremediation is based on the capacity of microorganisms to degrade organic pollutant compounds, such as hydrocarbons. This study presents the preliminary results of a bioremediation alternative for soils polluted with crude oil (petroleum hydrocarbons). The bioremediation was achieved by increasing the microbial population by adding the fibers provided from celluloid wastes and bacteria inoculum. The paper presents the effect of a bioremediation treatment applied to a cambic chernozem polluted with 50000 mg kg-1 (5% crude oil) and 100000 mg kg-1 (10% crude oil) of a complex mixture of total petroleum hydrocarbons (TPH).


2020 ◽  
Vol 8 (10) ◽  
pp. 1542 ◽  
Author(s):  
Francesca Cappitelli ◽  
Cristina Cattò ◽  
Federica Villa

The microbial deterioration of cultural heritage includes physical and chemical damage as well as aesthetic alteration. With the technological advancement, a plethora of techniques for removing unwanted microorganisms have opened up new opportunities for microbiologists and conservators. This article reviews the most applied, up-to-date, and sustainable techniques developed for the control of cultural heritage microbial deterioration presenting noteworthy case studies. These techniques include chemical methods, i.e., traditional biocides and nanoparticles; physical methods, such as mechanical removal, UV irradiation, gamma radiation, laser cleaning, heat shocking, microwaves, and dry ice treatment; and biological methods, such as natural molecules with biocidal activity, enzymes, and microorganisms. The application of control systems requires the comprehension of their behavior toward the unwanted microorganisms and possible interactions with the heritage materials. This overview shows also the control methods drawbacks for the purpose of creating awareness in selecting the most suitable technique or combination of techniques.


2020 ◽  
pp. 70-86
Author(s):  
Vineet Kumar ◽  
Ayushi Gautam ◽  
Praveen Guleria

Plantinum nanoparticles (Pt NPs) have huge potential as heterogeneous catalyst, chemiresistor coating material, nanomedicine, nanosensor, and electronic components along with various other industrial applications. Physical, chemical as well as biological methods are used for the synthesis of plantinum NPs. Physical methods depend upon the physical phenomenon for Pt NPs synthesis. Chemical methods involve one or other chemical reactions to prepare Pt NPs. Biological methods are preferred over other methods. Among all biological sources, use of plant extracts for Pt NPs synthesis is safe and cost-effective. Pt NPs have application in catalysis, electronics, nanodiagnosis and nanomedicine. Synthesis of diverse Pt NPs using different plant bioresource may be more useful for various in vivo applications in future.


2021 ◽  
Vol 9 (2) ◽  
pp. 463-469

Environmental pollution comes from a variety of sources. With the development of human civilization, the development of technology, and the increasing population, the world is now facing environmental pollution. Since environmental health has a direct effect on human health, therefore environmental protection is one of the most essential human problems. Removal of pollutants is a significant issue that, if not paid enough attention to, the next generation will face serious problems. Chemical and biological methods can be used to remove contaminants, but since the use of chemical methods will result in wastes that can cause contamination, the use of biological treatment methods such as bioremediation is a better and less dangerous to remove contaminants. In the bioremediation process, fungi or bacteria and their enzymes are used to clean and purify pollution. In this waste management technique living organisms or their enzymes uses to remove or neutralize contaminants. Mechanisms of enzymes that related bioremediation such as hydrolases and oxidoreductases have been widely studied. This chapter investigates information on the microbial enzymes from different microorganisms involved in the biodegradation of a broad range of pollutants.


Author(s):  
Arpita Roy

Background: Nanotechnology involves the synthesis of materials that are in nanometre sizes (1 to 100 nm). Nanotechnology has appeared as a new area of fundamental science and is getting worldwide consideration due to its extensive applications. They have exceptional physicochemical properties due to their unique size, shape and size distribution. Methods: Conventionally nanoparticles were synthesized using physical and chemical methods. These methods have various disadvantages therefore biological methods possess great interest. Biological synthesis uses bacteria, fungi, algae and plants. Results: Biosynthesis of nanoparticles using plants emerges as nanofactories as they offer nontoxic, clean and eco-friendly method with various physicochemical properties. Out of all the nanoparticles, silver attends special attention due to their various therapeutical and environmental applications. Conclusion: Therefore, in this review, a summary of various reports within the last ten years where plants were utilized for silver nanoparticle synthesis has been discussed. Further mechanism involves synthesis, factors affecting the process of synthesis and therapeutical applications has been discussed.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Ayesha Naveed Ul Haq ◽  
Akhtar Nadhman ◽  
Ikram Ullah ◽  
Ghulam Mustafa ◽  
Masoom Yasinzai ◽  
...  

Human’s quest for innovation, finding solutions of problems, and upgrading the industrial yield with energy efficient and cost-effective materials has opened the avenues of nanotechnology. Among a variety of nanoparticles, zinc oxide nanoparticles (ZnO) have advantages because of the extraordinary physical and chemical properties. It is one of the cheap materials in cosmetic industry, nanofertilizers, and electrical devices and also a suitable agent for bioimaging and targeted drug and gene delivery and an excellent sensor for detecting ecological pollutants and environmental remediation. Despite inherent toxicity of nanoparticles, synthetic routes are making use of large amount of chemical and stringent reactions conditions that are contributing as environmental contaminants in the form of high energy consumption, heat generation, water consumption, and chemical waste. Further, it is also adding to the innate toxicity of nanoparticles (NPs) that is either entirely ignored or poorly investigated. The current review illustrates a comparison between pollutants and hazards spawned from chemical, physical, and biological methods used for the synthesis of ZnO. Further, the emphasis is on devising eco-friendly techniques for the synthesis of ZnO especially biological methods which are comparatively less hazardous and need to be optimized by controlling the reaction conditions in order to get desired yield and characteristics.


Sign in / Sign up

Export Citation Format

Share Document