scholarly journals In search of feasible interventions for the prevention and cure of novel Coronavirus disease 2019

2020 ◽  
Author(s):  
Sunil Verma

COVID-19 (coronavirus disease 2019) is a public health emergency of international concern caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As of this time, there is no known effective pharmaceutical, phytopharmaceutical or traditional medicine for cure or prevention of COVID-19, although it is urgently needed. Based on the current understanding of the disease molecular mechanisms from the closest relatives of SARS-CoV-2 as well as novel Coronavirus SARS-CoV-2, I attempt to translate this knowledge into identifying some naturally occurring plant based substances and Ayurvedic medicinal herbs that could feasibly be used as preventive as well as treatment options for COVID-19.

Author(s):  
Sunil Kumar Verma

COVID-19 (coronavirus disease 2019) is a public health emergency of international concern caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As of this time, there is no known effective pharmaceutical, phytopharmaceutical or traditional medicine for cure or prevention of COVID-19, although it is urgently needed. In this review, based on the current understanding of the disease molecular mechanisms of novel Coronavirus SARS-CoV-2 and its closest relative SARS-CoV and other human Coronaviruses, I have identified some naturally occurring plant based substances and Ayurvedic medicinal herbs that could feasibly be tested as a matter of urgency for prevention as well as therapeutic option for COVID-19 in India and other parts of the world. I conclude that dried rhizome of Curcuma longa L. i.e. turmeric, and its active ingredient curcumin may be effective in preventing as well as cure the COVID-19 pandemic due to its proven antiviral activities, this however need to be tested by appropriate clinical trials as research priority.


Author(s):  
Subhashis Debnath ◽  
Runa Chakravorty ◽  
Donita Devi

In December 2019, severe acute respiratory syndrome-coronavirus-2, a novel coronavirus, initiated an outbreak of pneumonia from Wuhan in China, which rapidly spread worldwide. The outbreak was declared as “a public health emergency of international concern” by the WHO on January 30, 2020, and as a pandemic on March 11, 2020. The disease is transmitted by inhalation or contact with infected droplets and the incubation period ranges from 2 to 14 d. The symptoms are usually fever, cough, sore throat, breathlessness, fatigue, malaise among others. The disease is mild in most people; in some (usually the elderly and those with comorbidities), it may progress to pneumonia, acute respiratory distress syndrome (ARDS) and multi organ dysfunction. Many people are asymptomatic. The virus spreads faster than its two ancestors the SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), but has lower fatality.


2020 ◽  
Vol I (2) ◽  
pp. 13-14
Author(s):  
Gyanendra Kumar

Coronavirus disease 2019 (COVID-19) is caused by novel coronavirus, now called severe acute respiratory syndrome Coronavirus 2. World Health Organization (WHO) has declared this outbreak as a “Public health emergency of international concern” (PHEIC) on January 30, 2020. WHO subsequently declared COVID-19 a pandemic on March 11, 2020.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 667
Author(s):  
Robert J. Geraghty ◽  
Matthew T. Aliota ◽  
Laurent F. Bonnac

The emergence or re-emergence of viruses with epidemic and/or pandemic potential, such as Ebola, Zika, Middle East Respiratory Syndrome (MERS-CoV), Severe Acute Respiratory Syndrome Coronavirus 1 and 2 (SARS and SARS-CoV-2) viruses, or new strains of influenza represents significant human health threats due to the absence of available treatments. Vaccines represent a key answer to control these viruses. However, in the case of a public health emergency, vaccine development, safety, and partial efficacy concerns may hinder their prompt deployment. Thus, developing broad-spectrum antiviral molecules for a fast response is essential to face an outbreak crisis as well as for bioweapon countermeasures. So far, broad-spectrum antivirals include two main categories: the family of drugs targeting the host-cell machinery essential for virus infection and replication, and the family of drugs directly targeting viruses. Among the molecules directly targeting viruses, nucleoside analogues form an essential class of broad-spectrum antiviral drugs. In this review, we will discuss the interest for broad-spectrum antiviral strategies and their limitations, with an emphasis on virus-targeted, broad-spectrum, antiviral nucleoside analogues and their mechanisms of action.


2021 ◽  
Vol 1 (1) ◽  
pp. 7-8
Author(s):  
Solomon Arigwe Joseph ◽  
Abuhuraira Ado Musa ◽  
Faisal Muhammad ◽  
Tijjani Muhammad Ahmad

People began to become ill in late December 2019 in Wuhan, Hubei Province, China, and the illness was revealed to be a kind of pneumonia with unusual signs and symptoms. It was eventually discovered as a novel coronavirus, a virus that causes widespread sickness in animals and birds. World Health Organization (WHO) named this new viral disease coronavirus disease 2019 (COVID-19) and declared a Public Health Emergency of International Concern in January 2020.


2020 ◽  
Vol 22 (2) ◽  
pp. 103-104
Author(s):  
Andrew Udy ◽  
◽  

The current global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has thrust intensive care medicine to the forefront of health care practice in Australia and New Zealand. Indeed, reports from other countries and jurisdictions convey highly confronting statistics about the scale of this public health emergency, particularly in terms of the demand on intensive care unit (ICU)services. Whether this occurs here remains to be seen, although if such a scenario does eventuate, it will represent an unprecedented challenge to our community. In parallel, these events offer the opportunity for greater coordination, improved communication, and innovation in clinical care, which are principles that in many ways define our specialty.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Xing Li ◽  
Ying Wang ◽  
Patrizia Agostinis ◽  
Arnold Rabson ◽  
Gerry Melino ◽  
...  

Abstract The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in December 2019. As similar cases rapidly emerged around the world1–3, the World Health Organization (WHO) declared a public health emergency of international concern on January 30, 2020 and pronounced the rapidly spreading coronavirus outbreak as a pandemic on March 11, 20204. The virus has reached almost all countries of the globe. As of June 3, 2020, the accumulated confirmed cases reached 6,479,405 with more than 383,013 deaths worldwide. The urgent and emergency care of COVID-19 patients calls for effective drugs, in addition to the beneficial effects of remdesivir5, to control the disease and halt the pandemic.


2020 ◽  
Vol 318 (6) ◽  
pp. E878-E880 ◽  
Author(s):  
Johnny S. Younis ◽  
Zaid Abassi ◽  
Karl Skorecki

The viral pandemic of the coronavirus disease 2019 (COVID-19), generated by a novel mutated severe acute respiratory syndrome coronavirus (SARS-CoV-2), has become a serious worldwide public health emergency, evolving exponentially. While the main organ targeted in this disease is the lungs, other vital organs, such as the heart and kidney, may be implicated. The main host receptor of the SARS-CoV-2 is angiotensin converting enzyme 2 (ACE2), a major component of the renin-angiotensin-aldosterone system (RAAS). The ACE2 is also involved in testicular male regulation of steroidogenesis and spermatogenesis. As the SARS-CoV-2 may have the potential to infect the testis via ACE2 and adversely affect male reproductive system, it is essential to commence with targeted studies to learn from the current pandemic, with the possibility of preemptive intervention, depending on the findings and time course of the continuing pandemic.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6591
Author(s):  
Badriyah Alhalaili ◽  
Ileana Nicoleta Popescu ◽  
Olfa Kamoun ◽  
Feras Alzubi ◽  
Sami Alawadhia ◽  
...  

The coronavirus disease 2019 (COVID-19) pandemic is considered a public health emergency of international concern. The 2019 novel coronavirus (2019-nCoV) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused this pandemic has spread rapidly to over 200 countries, and has drastically affected public health and the economies of states at unprecedented levels. In this context, efforts around the world are focusing on solving this problem in several directions of research, by: (i) exploring the origin and evolution of the phylogeny of the SARS-CoV-2 viral genome; (ii) developing nanobiosensors that could be highly effective in detecting the new coronavirus; (iii) finding effective treatments for COVID-19; and (iv) working on vaccine development. In this paper, an overview of the progress made in the development of nanobiosensors for the detection of human coronaviruses (SARS-CoV, SARS-CoV-2, and Middle East respiratory syndrome coronavirus (MERS-CoV) is presented, along with specific techniques for modifying the surface of nanobiosensors. The newest detection methods of the influenza virus responsible for acute respiratory syndrome were compared with conventional methods, highlighting the newest trends in diagnostics, applications, and challenges of SARS-CoV-2 (COVID-19 causative virus) nanobiosensors.


2021 ◽  
Vol 15 (03) ◽  
pp. 366-369
Author(s):  
Rooh Ullah ◽  
Muhammad Suleman Rana ◽  
Mehmood Qadir ◽  
Muhammad Usman ◽  
Niaz Ahmed

Pandemic of novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections in China is now become global public health crisis. At present 87.64% of the world is infected by this deadly illness. The risk from this epidemic depends on the nature of the virus, including how well it transmits from person to person, and the complications resulting from this current illness. The novel coronavirus has killed thousands of people in China and other countries as well; its rate of mortality is increasing day by day. There is an urgent need to control the virus by developing vaccine or any other antiviral drugs to save the world from this deadly viral infection.


Sign in / Sign up

Export Citation Format

Share Document