scholarly journals Pedogenic processes and the drying of Mars

2021 ◽  
Author(s):  
Adrian Broz ◽  
Lucas Silva

New insights from Mars suggest crustal hydration contributed to the long-term drying of the planet. Three to four billion years ago, hydration of the Martian crust could have resulted from precipitation-driven surface weathering of mafic sediments, which on Earth leads to pedogenesis, i.e., the formation of soil. Although soil has been traditionally defined by its biological component, growing evidence of global scale soil formation on a presumably lifeless Mars suggests abiotic pedogenesis was a critical process early in the planet’s history. Using a recently updated definition of soil as leverage, we argue that pedogenic processes could have consumed large amounts of Mars’ exchangeable liquid water. Since there is no evidence of plate tectonics to liberate and recycle water from hydrated pedogenic minerals on Mars, the global formation of soil billions of years ago could have contributed to the irreversible desiccation of the planet.

2022 ◽  
Author(s):  
Junxing Chen ◽  
Hehe Jiang ◽  
Ming Tang ◽  
Jihua Hao ◽  
Meng Tian ◽  
...  

Abstract Terrestrial planets Venus and Earth have similar sizes, masses, and bulk compositions, but only Earth developed planetary-scale plate tectonics. Plate tectonics generates weatherable fresh rocks and transfers surface carbon back to Earth’s interior, which provides a long-term climate feedback, serving as a thermostat to keep Earth a habitable planet. Yet Venus shares a few common features with early Earth, such as stagnant-lid tectonics and the possible early development of a liquid ocean. Given all these similarities with early Earth, why would Venus fail to develop global-scale plate tectonics? In this study, we explore solutions to this problem by examining Venus’ slab densities under hypothesized subduction-zone conditions. Our petrologic simulations show that eclogite facies may be reached at greater depths on Venus than on Earth, and Venus’ slab densities are consistently lower than Earth’s. We suggest that the lack of sufficient density contrast between the high-pressure metamorphosed slab and mantle rocks may have impeded self-sustaining subduction. Although plume-induced crustal downwelling exists on Venus, the dipping of Venus’ crustal rocks to mantle depth fails to transition into subduction tectonics. As a consequence, the supply of fresh silicate rocks to the surface has been limited. This missing carbon sink eventually diverged the evolution of Venus’ surface environment from that of Earth.


2021 ◽  
Author(s):  
Philipp Baumeister ◽  
Nicola Tosi ◽  
Jasmine MacKenzie ◽  
John Lee Grenfell

<p>Liquid water is generally assumed to be the most important factor for the emergence of life, and so a major goal in exoplanet science is the search for planets with water oceans. On terrestrial planets, the silicate mantle is a large source of water, which can be outgassed into the atmosphere via volcanism. Outgassing is subject to a series of feedback processes between atmosphere and interior, which continually shape both atmospheric composition, pressure, and temperature, as well as interior dynamics. For example, water has a high solubility in surface lava, which can strongly limit its outgassing into the atmosphere even at low atmospheric pressures. In contrast, CO<sub>2</sub> can be easily outgassed. This drives up the surface pressure and temperature, potentially preventing further water outgassing [1].</p> <p>We present the results of an extensive parameter study, where we use a newly developed 1D numerical model to simulate the coupled evolution of the atmosphere and interior of terrestrial exoplanets up to 5 Earth masses around Sun-like stars, with internal structures ranging from Moon- to Mercury-like. The model accounts for the main mechanisms controlling the global-scale, long-term evolution of stagnant-lid rocky planets (i.e. bodies without plate tectonics), and it includes a large number of atmosphere-interior feedback processes, such as a CO<sub>2</sub> weathering cycle, volcanic outgassing based on the pressure-dependent solubility of volatiles in surface lava, a water cycle between ocean and atmosphere, greenhouse heating, as well as the influence of a primordial H<sub>2</sub> atmosphere, which can be lost through escape processes. While many atmosphere-interior feedback processes have been studied before in detail (e.g. [2, 3]), we present here a comprehensive model combining the important planetary processes across a wide range of terrestrial planets.</p> <p>We find that a significant majority of high-density exoplanets (i.e. Mercury-like planets with large cores) are able to outgas and sustain water on their surface. In contrast, most planets with intermediate, Earth-like densities either transition into a runaway greenhouse regime due to strong CO<sub>2</sub> outgassing, or retain part of their primordial atmosphere, which prevents water from being outgassed. This suggests that high-density planets could be the most promising targets when searching for suitable candidates for hosting liquid water. Furthermore, the degeneracy of the interior structures of high-density planets is limited compared to that of planets with Earth-like density, which further facilitates the characterization of these bodies, and our results predict largely uniform atmospheric compositions across the range of high-density planets, which could be verified by future spectroscopic measurements.</p> <p> </p> <p>References:</p> <p>[1] Tosi, N. <em>et al.</em> The habitability of a stagnant-lid earth. <em>A&A</em> <strong>605</strong>, A71 (2017).</p> <p>[2] Noack, L., Rivoldini, A. & Van Hoolst, T. Volcanism and outgassing of stagnant-lid planets: Implications for the habitable zone. <em>Physics of the Earth and Planetary Interiors</em> <strong>269</strong>, 40–57 (2017).</p> <p>[3] Foley, B. J. & Smye, A. J. Carbon Cycling and Habitability of Earth-Sized Stagnant Lid Planets. <em>Astrobiology</em> <strong>18</strong>, 873–896 (2018).</p>


2014 ◽  
Vol 76 ◽  
pp. 15-23
Author(s):  
Barrie J. Wills

A warm welcome to our "World of Difference" to all delegates attending this conference - we hope your stay is enjoyable and that you will leave Central Otago with an enhanced appreciation of the diversity of land use and the resilient and growing economic potential that this region has to offer. Without regional wellbeing the national economy will struggle to grow, something Central Government finally seems to be realising, and the Central Otago District Council Long Term Plan 2012-2022 (LTP) signals the importance of establishing a productive economy for the local community which will aid in the economic growth of the district and seeks to create a thriving economy that will be attractive to business and residents alike. Two key principles that underpin the LTP are sustainability and affordability, with the definition of sustainability being "… development that meets the needs of the present without compromising the ability of future generations to meet their own needs."


2018 ◽  
Vol 940 (10) ◽  
pp. 54-64 ◽  
Author(s):  
I.A. Belozertseva ◽  
A.A. Sorokovoj

On the basis of long-term researches of soils in the territory of Russia and Mongolia soil and ecological division into districts of the Baikal region is carried out. At division into districts the whole set of an environment of soil formation was considered. On the map of soil and ecological division into districts 13 mountain, mid-mountain, low-mountain taiga, foothill, hollow-valley, forest-steppe and steppe provinces reflecting surface device originality as the ratio of balance of heat and moisture forming a basis to zoning is shown against the background of difficult orography are allocated. In total 42 districts on lithologic-geomorphological features are allocated. In formation of distinctions of a soil cover of these provinces the leading role is played by bioclimatic factors and inside them the lithologic-geomorphological ones. In the view of structural approach of the district they are considered as territories with a certain natural change of several types of the soil cover structure caused by features of a relief and the parent rock. The map is made in the MapInfo program. It is revealed that on ill-defined width zoning of soils the vertical one which has a greater influence on soils of this region is imposed. Soils of the Baikal region are not similar to the soils located at the same latitude of the flat European territory of Russia. Zone soils of this territory are specific and original.


Author(s):  
Roy Livermore

The Earth’s climate changes naturally on all timescales. At the short end of the spectrum—hours or days—it is affected by sudden events such as volcanic eruptions, which raise the atmospheric temperature directly, and also indirectly, by the addition of greenhouse gases such as water vapour and carbon dioxide. Over years, centuries, and millennia, climate is influenced by changes in ocean currents that, ultimately, are controlled by the geography of ocean basins. On scales of thousands to hundreds of thousands of years, the Earth’s orbit around the Sun is the crucial influence, producing glaciations and interglacials, such as the one in which we live. Longer still, tectonic forces operate over millions of years to produce mountain ranges like the Himalayas and continental rifts such as that in East Africa, which profoundly affect atmospheric circulation, creating deserts and monsoons. Over tens to hundreds of millions of years, plate movements gradually rearrange the continents, creating new oceans and destroying old ones, making and breaking land and sea connections, assembling and disassembling supercontinents, resulting in fundamental changes in heat transport by ocean currents. Finally, over the very long term—billions of years—climate reflects slow changes in solar luminosity as the planet heads towards a fiery Armageddon. All but two of these controls are direct or indirect consequences of plate tectonics.


Author(s):  
Takis S. Pappas

Based on an original definition of modern populism as “democratic illiberalism” and many years of meticulous research, Takis Pappas marshals extraordinary empirical evidence from Argentina, Greece, Peru, Italy, Venezuela, Ecuador, Hungary, the United States, Spain, and Brazil to develop a comprehensive theory about populism. He addresses all key issues in the debate about populism and answers significant questions of great relevance for today’s liberal democracy, including: • What is modern populism and how can it be differentiated from comparable phenomena like nativism and autocracy? • Where in Latin America has populism become most successful? Where in Europe did it emerge first? Why did its rise to power in the United States come so late? • Is Trump a populist and, if so, could he be compared best with Venezuela’s Chávez, France’s Le Pens, or Turkey’s Erdoğan? • Why has populism thrived in post-authoritarian Greece but not in Spain? And why in Argentina and not in Brazil? • Can populism ever succeed without a charismatic leader? If not, what does leadership tell us about how to challenge populism? • Who are “the people” who vote for populist parties, how are these “made” into a group, and what is in their minds? • Is there a “populist blueprint” that all populists use when in power? And what are the long-term consequences of populist rule? • What does the expansion, and possibly solidification, of populism mean for the very nature and future of contemporary democracy? Populism and Liberal Democracy will change the ways the reader understands populism and imagines the prospects of liberal democracy.


Author(s):  
Katharina Diehl ◽  
Tatiana Görig ◽  
Charlotte Jansen ◽  
Maike Carola Hruby ◽  
Annette B. Pfahlberg ◽  
...  

Pharmacists and pharmaceutical technicians play an important role in counselling customers regarding sunscreen use and sun protection measures. A potentially helpful tool that can be used during counselling is the ultraviolet index (UVI), which informs individuals when and what sun protection measures are needed at a specific place and time. Our aim in this qualitative study was to explore awareness, knowledge, and use of the UVI during counselling in pharmacies. We used semi-structured interviews with pharmacists and pharmaceutical technicians (n = 20) to answer our research questions. Interviews were audiotaped, transcribed verbatim, and analyzed using qualitative content analysis. During the interviews pharmacists and pharmaceutical technicians revealed a lot of uncertainty and lack of knowledge regarding the UVI. Eight professionals were able to give a correct definition of UVI. Amongst others, the UVI was confused with sun protection factor. Overall, the UVI was hardly used during the counselling of customers. The UVI was developed to provide guidance when which type of sun protection is required to avoid detrimental effects of ultraviolet radiation. For effective implementation, both the general population and health professionals (e.g., pharmacists) have to increase their knowledge about the UVI. This would strengthen its use during professional counselling in pharmacies and may help to reduce the incidence of skin cancer over the long term.


2021 ◽  
pp. 146801812110191
Author(s):  
William Hynes

New economic thinking and acting through a systemic approach could outline policy alternatives to tackle the global-scale systemic challenges of financial, economic, social and environmental emergencies, and help steer our recovery out of the current crisis. A systemic recovery requires an economic approach that balances several factors - markets and states, efficiency and resilience, growth and sustainability, national and global stability, short-term emergency measures and long-term structural change. To achieve this, we need to think beyond our policy silos, comprehend our interconnections, and build resilience into our systems.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Khuram Shahzad Ahmad ◽  
Muntaha Talat ◽  
Shaan Bibi Jaffri ◽  
Neelofer Shaheen

AbstractConventional treatment modes like chemotherapy, thermal and radiations aimed at cancerous cells eradication are marked by destruction pointing the employment of nanomaterials as sustainable and auspicious materials for saving human lives. Cancer has been deemed as the second leading cause of death on a global scale. Nanomaterials employment in cancer treatment is based on the utilization of their inherent physicochemical characteristics in addition to their modification for using as nano-carriers and nano-vehicles eluted with anti-cancer drugs. Current work has reviewed the significant role of different types of nanomaterials in cancer therapeutics and diagnostics in a systematic way. Compilation of review has been done by analyzing voluminous investigations employing ERIC, MEDLINE, NHS Evidence and Web of Science databases. Search engines used were Google scholar, Jstore and PubMed. Current review is suggestive of the remarkable performance of nanomaterials making them candidates for cancer treatment for substitution of destructive treatment modes through investigation of their physicochemical characteristics, utilization outputs and long term impacts in patients.


Author(s):  
Pablo Villalobos Dintrans ◽  
Jorge Browne ◽  
Ignacio Madero-Cabib

Abstract Objective Provide a synthesis of the COVID-19 policies targeting older people in Chile, stressing their short- and long-term challenges. Method Critical analysis of the current legal and policy measures, based on national-level data and international experiences. Results Although several policies have been enacted to protect older people from COVID-19, these measures could have important unintended negative consequences in this group’s mental and physical health, as well as financial aspects. Discussion A wider perspective is needed to include a broader definition of health—considering financial scarcity, access to health services, mental health issues, and long-term care—in the policy responses to COVID-19 targeted to older people in Chile.


Sign in / Sign up

Export Citation Format

Share Document