Investigation of mesenchymal stem cells and the development of experimental strategies for rescuing glaucomatous eyes using a stem cell-based therapy

2013 ◽  
Author(s):  
Eun-Ah Ye
Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3007 ◽  
Author(s):  
Junya Yoshioka ◽  
Yu Ohsugi ◽  
Toru Yoshitomi ◽  
Tomoyuki Yasukawa ◽  
Naoki Sasaki ◽  
...  

Bone marrow-derived mesenchymal stem cells (BMSCs) are an important cell resource for stem cell-based therapy, which are generally isolated and enriched by the density-gradient method based on cell size and density after collection of tissue samples. Since this method has limitations with regards to purity and repeatability, development of alternative label-free methods for BMSC separation is desired. In the present study, rapid label-free separation and enrichment of BMSCs from a heterogeneous cell mixture with bone marrow-derived promyelocytes was successfully achieved using a dielectrophoresis (DEP) device comprising saw-shaped electrodes. Upon application of an electric field, HL-60 cells as models of promyelocytes aggregated and floated between the saw-shaped electrodes, while UE7T-13 cells as models of BMSCs were effectively captured on the tips of the saw-shaped electrodes. After washing out the HL-60 cells from the device selectively, the purity of the UE7T-13 cells was increased from 33% to 83.5% within 5 min. Although further experiments and optimization are required, these results show the potential of the DEP device as a label-free rapid cell isolation system yielding high purity for rare and precious cells such as BMSCs.


2018 ◽  
Vol 234 (2) ◽  
pp. 1326-1335 ◽  
Author(s):  
Saeid Bagheri-Mohammadi ◽  
Mohammad Karimian ◽  
Behrang Alani ◽  
Javad Verdi ◽  
Rana Moradian Tehrani ◽  
...  

2020 ◽  
Vol 21 (5) ◽  
pp. 1638 ◽  
Author(s):  
Emilia Di Giovanni ◽  
Silvia Buonvino ◽  
Ivano Amelio ◽  
Sonia Melino

The endogenous gasotransmitter H2S plays an important role in the central nervous, respiratory and cardiovascular systems. Accordingly, slow-releasing H2S donors are powerful tools for basic studies and innovative pharmaco-therapeutic agents for cardiovascular and neurodegenerative diseases. Nonetheless, the effects of H2S-releasing agents on the growth of stem cells have not been fully investigated. H2S preconditioning can enhance mesenchymal stem cell survival after post-ischaemic myocardial implantation; therefore, stem cell therapy combined with H2S may be relevant in cell-based therapy for regenerative medicine. Here, we studied the effects of slow-releasing H2S agents on the cell growth and differentiation of cardiac Lin− Sca1+ human mesenchymal stem cells (cMSC) and on normal human dermal fibroblasts (NHDF). In particular, we investigated the effects of water-soluble GSH–garlic conjugates (GSGa) on cMSC compared to other H2S-releasing agents, such as Na2S and GYY4137. GSGa treatment of cMSC and NHDF increased their cell proliferation and migration in a concentration dependent manner with respect to the control. GSGa treatment promoted an upregulation of the expression of proteins involved in oxidative stress protection, cell–cell adhesion and commitment to differentiation. These results highlight the effects of H2S-natural donors as biochemical factors that promote MSC homing, increasing their safety profile and efficacy after transplantation, and the value of these donors in developing functional 3D-stem cell delivery systems for cardiac muscle tissue repair and regeneration.


2017 ◽  
Vol 43 (3) ◽  
pp. 891-904 ◽  
Author(s):  
Jie He ◽  
Guang-ping Ruan ◽  
Xiang Yao ◽  
Ju-fen Liu ◽  
Xiang-qing Zhu ◽  
...  

Background/Aims: Stem cell-based therapy is attractive in many clinical studies, but current data on the safety of stem cell applications remains inadequate. This study observed the safety, immunological effect of cynomolgus monkey umbilical cord mesenchymal stem cells (mUC-MSCs) injected into cynomolgus monkeys, in order to evaluate the safety of human umbilical cord mesenchymal stem cells (hUC-MSCs) prepared for human clinical application. Methods: Eighteen cynomolgus monkeys were divided into three groups. Group 1 is control group, Group 2 is low-dose group, Group 3 is high-dose group. After repeated administrations of mUC-MSCs, cynomolgus monkeys were observed for possible toxic reactions. Results: During the experiment, no animal died. There were no toxicological abnormalities in body weight, body temperature, electrocardiogram, coagulation and pathology. In the groups 2 and 3, AST and CK transiently increased, and serum inorganic P slightly decreased. All animals were able to recover at 28 days after the infusion was stopped. In the groups 2 and 3, CD3+ and IL-6 levels significantly increased, and recovery was after 28 days of infusion. There were no obvious pathological changes associated with the infusion of cells in the general and microscopic examinations. Conclusions: The safe dosage of repeated intravenous infusion of mUC-MSCs in cynomolgus monkeys is 1.0 × 107/kg, which is 10 times of that in clinical human use.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mehrdad Afarid ◽  
Fatemeh Sanie-Jahromi

COVID-19 disease has been a global health problem since late 2019. There are many concerns about the rapid spread of this disease, and yet, there is no approved treatment for COVID-19. Several biological interventions have been under study recently to investigate efficient treatment for this viral disease. Besides, many efforts have been made to find a safe way to prevent and vaccinate people against COVID-19 disease. In severe cases, patients suffer from acute respiratory distress syndrome usually associated with an increased level of inflammatory cytokines, called a cytokine storm. It seems that reequilibrating the hyperinflammatory response of the host immune system and regeneration of damaged cells could be the main way to manage the disease. Mesenchymal stem cells (MSCs) have been recently under investigation in this regard, and the achieved clinical outcomes show promising evidence for stem cell-based therapy of COVID-19. MSCs are known for their potential for immunomodulation, defense against virus infection, and tissue regeneration. MSCs are a newly emerged platform for designing vaccines and show promising evidence in this area. In the present study, we provided a thorough research study on the most recent clinical studies based on stem cells in the treatment of COVID-19 while introducing stem cell exclusivities for use as an immune disorder or lung cell therapy and its potential application for protection and vaccination against COVID-19.


Stroke ◽  
2020 ◽  
Vol 51 (9) ◽  
pp. 2854-2862 ◽  
Author(s):  
You Jeong Park ◽  
Kuniyasu Niizuma ◽  
Maxim Mokin ◽  
Mari Dezawa ◽  
Cesar V. Borlongan

Stem cell-based regenerative therapies may rescue the central nervous system following ischemic stroke. Mesenchymal stem cells exhibit promising regenerative capacity in in vitro studies but display little to no incorporation in host tissue after transplantation in in vivo models of stroke. Despite these limitations, clinical trials using mesenchymal stem cells have produced some functional benefits ascribed to their ability to modulate the host’s inflammatory response coupled with their robust safety profile. Regeneration of ischemic brain tissue using stem cells, however, remains elusive in humans. Multilineage-differentiating stress-enduring (Muse) cells are a distinct subset of mesenchymal stem cells found sporadically in connective tissue of nearly every organ. Since their discovery in 2010, these endogenous reparative stem cells have been investigated for their therapeutic potential against a variety of diseases, including acute myocardial infarction, stroke, chronic kidney disease, and liver disease. Preclinical studies have exemplified Muse cells’ unique ability mobilize, differentiate, and engraft into damaged host tissue. Intravenously transplanted Muse cells in mouse lacunar stroke models afforded functional recovery and long-term engraftment into the host neural network. This mini-review article highlights these biological properties that make Muse cells an exceptional candidate donor source for cell therapy in ischemic stroke. Elucidating the mechanism behind the therapeutic potential of Muse cells will undoubtedly help optimize stem cell therapy for stroke and advance the field of regenerative medicine.


2021 ◽  
Vol 30 ◽  
pp. 096368972098850
Author(s):  
Hang-Soo Park ◽  
Rishi Man Chugh ◽  
Amro Elsharoud ◽  
Mara Ulin ◽  
Sahar Esfandyari ◽  
...  

Primary ovarian insufficiency (POI), a condition in which there is a loss of ovarian function before the age of 40 years, leads to amenorrhea and infertility. In our previously published studies, we demonstrated recovery of POI, correction of serum sex hormone levels, increase in the granulosa cell population, and restoration of fertility in a chemotherapy-induced POI mouse model after intraovarian transplantation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). While hBM-MSC may be a promising cell source for treatment of POI, there are few reports on the safety of stem cell-based therapy for POI. For future clinical applications, the safety of allogenic hBM-MSCs for the treatment of POI through intraovarian engraftment needs to be addressed and verified in appropriate preclinical models. In this study, we induced POI in C57/BL6 mice using chemotherapy, then treated the mice with hBM-MSCs (500,000 cells/ovary) by intraovarian injection. After hBM-MSC treatment, we analyzed the migration of engrafted cells by genomic DNA polymerase chain reaction (PCR) using a human-specific ALU repeat and by whole-body sectioning on a cryo-imaging system. We examined the possibility of transfer of human DNA from the hBM-MSCs to the resulting offspring, and compared the growth rate of offspring to that of normal mice and hBM-MSC-treated mice. We found that engrafted hBM-MSCs were detected only in mouse ovaries and did not migrate into any other major organs including the heart, lungs, and liver. Further, we found that no human DNA was transferred into the fetus. Interestingly, the engrafted cells gradually decreased in number and had mostly disappeared after 4 weeks. Our study demonstrates that intraovarian transplantation of hBM-MSCs could be a safe stem cell-based therapy to restore fertility in POI patients.


2019 ◽  
Vol 10 ◽  
pp. 204173141982779
Author(s):  
Kelly Campbell ◽  
Shailesh Naire ◽  
Jan Herman Kuiper

Autologous chondrocyte implantation is a cell-based therapy for treating chondral defects. The procedure begins by inserting chondrocytes into the defect region. The chondrocytes initiate healing by proliferating and depositing extracellular matrix, which allows them to migrate into the defect until it is completely filled with new cartilage. Mesenchymal stem cells can be used instead of chondrocytes with similar long-term results. The main differences are at early times since mesenchymal stem cells must first differentiate into chondrocytes before cartilage is formed. To better understand this repair process, we present a mathematical model of cartilage regeneration after cell therapy. We extend our previous work to include the cell–cell interaction between mesenchymal stem cells and chondrocytes via growth factors. Our results show that matrix formation is enhanced at early times in the presence of growth factors. This study reinforces the importance of mesenchymal stem cell and chondrocyte interaction in the cartilage healing process as hypothesised in experimental studies.


2019 ◽  
Vol 11 (11) ◽  
pp. 957-967 ◽  
Author(s):  
Vladimir Holan ◽  
Barbora Hermankova ◽  
Magdalena Krulova ◽  
Alena Zajicova

2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Tianning Chen ◽  
Tieyi Yang ◽  
Weiwei Zhang ◽  
Jin Shao

AbstractOsteoporosis (OP), a common systemic metabolic bone disease, is characterized by low bone mass, increasing bone fragility and a high risk of fracture. At present, the clinical treatment of OP mainly involves anti-bone resorption drugs and anabolic agents for bone, but their long-term use can cause serious side effects. The development of stem cell therapy and regenerative medicine has provided a new approach to the clinical treatment of various diseases, even with a hope for cure. Recently, the therapeutic advantages of the therapy have been shown for a variety of orthopedic diseases. However, these stem cell-based researches are currently limited to animal models; the uncertainty regarding the post-transplantation fate of stem cells and their safety in recipients has largely restricted the development of human clinical trials. Nevertheless, the feasibility of mesenchymal stem cells to treat osteoporotic mice has drawn a growing amount of intriguing attention from clinicians to its potential of applying the stem cell-based therapy as a new therapeutic approach to OP in the future clinic. In the current review, therefore, we explored the potential use of mesenchymal stem cells in human OP treatment.


Sign in / Sign up

Export Citation Format

Share Document