scholarly journals Proses Pembuatan Biofuel dengan Metode perengakahan Menggunakan Katalis Padat

Author(s):  
Agus Budianto ◽  
Ayuni Rita Sari ◽  
Yohana Winda Monica ◽  
Erlinda Ningsih ◽  
Esthi Kusdarini

<table class="NormalTable"><tbody><tr><td width="200"><span class="fontstyle0">The development of population growth causes of fuels need increasing. Because of<br />that reason, it necessary to create alternative fuels which are friendly to the<br />environment to meet the fuels need in society. Fossil fuel is a non-renewable fuel.<br />Biofuel as an alternative fuel can be taken as a solution to solve this problem. The<br />reviewd aim was to determine the effect of raw materials used on yield product and<br />the different effects of temperature and catalysts on the yield of special materials<br />(gasoline, diesel, kerosene) biofuel. Biofuel production started from the<br />preparation of raw materials, catalylic, and catalytic cracking process using a<br />fixed bed reactor. Raw materials greatly affected yield product. The highest yield<br />products were being gotten from RBDPS raw materials of 93.29%. Biofuel from<br />used cooking oil and concentration of red sludge catalyst of 15% produced the<br />highest biofuel with gasoline compound of 73.86% and kerosene compound of<br />26.14%. Biofuel from camelina oil with ZSM-5-Zn catalyst concentration of 30%<br />produced the highest gasoline yield of 75.65%.</span></td></tr></tbody></table>

2020 ◽  
Vol 12 (2) ◽  
pp. 304-311 ◽  
Author(s):  
Gaofeng Xu ◽  
Chengxinzhuo Jia ◽  
Zhengjun Shi ◽  
Ruijuan Liang ◽  
Chunhua Wu ◽  
...  

The ex-situ catalytic cracking of camelina oil using nickel loaded MCM-41 as catalyst at 450 °C in fixed bed reactor was studied. Results revealed that the yield, selectivity and chemical composition of the liquid products was improved by nickel loaded MCM-41 without affecting the crystalline structure of MCM-41. Moreover, the loaded nickel onto MCM-41 facilitated the cyclization, alkylation, aromatization, deoxygenation, isomerization and cracking reactions.


Author(s):  
Yurii Polievoda ◽  
Serhiy Burlaka

Transport consumes about 20% of the world's primary energy, mainly oil. This situation is unacceptable for countries that do not have their own oil reserves and want a stable economy and energy independence. Communities in many countries recognize that these problems continue to accompany the use of road transport and have long paid serious attention to the use of alternative fuels for vehicles, including biofuels, natural gas and hydrogen. However, in the current increase in the number of food industry facilities, it is necessary to deal with food products that have a negative impact on the environment (food fats). According to some data, the amount of garbage per day can range from a few kilograms to tens of tons. Approximately 90% of diesel biofuels (DBs) are mainly derived from processed oils and raw materials, including fats and oils of animal or vegetable origin that are recyclable. Biofuel is a biologically harmless product. In contact with water, the wine does not harm aquatic flora and fauna. In water or soil, it undergoes almost complete biological decomposition. Combustion of diesel biofuels emits much less carbon dioxide (CO2) than combustion of conventional fuels. Of course, there are drawbacks. First, biofuels have low frost resistance. Undiluted biofuel damages rubber hoses and gaskets. Biofuels have a certain shelf life. Due to increased maintenance costs, deposits can contaminate fuel equipment and filters during operation. Particular attention should be paid to the free glycerin that remains during production. The article considers biofuel production technologies and methods of glycerin removal. The focus is on devices that allow you to remove glycerin mobile. As a result, a faucet was proposed in which a filter was installed to remove residual glycerin and a study of its operation using the FlowVision program was performed. The simulation model of operation of the mixer with reception of indicators of its work is executed.


Author(s):  
Ucik Ika Fenti Styana ◽  
Muhammad Sigit Cahyono

<p>Salah satu potensi sumber energi di Indonesia adalah limbah biomasa berupa limbah padat industri aren. Tujuan penelitian ini adalah untuk mengetahui pengaruh jenis bahan terhadap suhu reaktor dan efisiensi proses gasifikasi limbah padat aren. Bahan baku yang digunakan didapatkan dari Sentra Industri Tepung Aren di Dusun Daleman, Kecamatan Tulung, Kabupaten Klaten. Sebelum diproses bahan dikeringkan terlebih dahulu dengan dijemur di bawah sinar matahari selama sehari, kemudian dilakukan analisa proksimat. Variabel penelitian adalah jenis bahan berupa limbah padat aren murni, campuran limbah padat aren dan tempurung kelapa, serta tempurung kelapa murni. Proses gasifikasi diawali dengan memasukkan bahan ke dalam reaktor tipe <em>Fixed-bed Updraft Gasifier</em>, kemudian dinyalakan sampai keluar gas yang bisa terbakar dan diuji selama satu jam. Syn gas yang terbentuk dianalisa kandungan gasnya, kemudian dibakar untuk mengetahui efisiensinya. Hasil penelitian menunjukkan bahwa jenis bahan mempengaruhi suhu proses di dalam reaktor, dimana suhu optimal dicapai pada gasifikasi tempurung kelapa murni, yaitu proses pengeringan pada suhu 120 °C, pirolisis 340 °C, Reduksi 650 °C, dan oksidasi 721 °C. Gas yang dihasilkan tersebut dapat terbakar selama 15 menit, dibandingkan campuran limbah padat aren - tempurung yang terbakar 8 menit dan limbah padat aren murni yang hanya mampu terbakar 1 menit.</p><p><em>One of the potential energy sources in Indonesia is biomass waste in the form of palm sugar solid waste. The purpose of this study was to determine the effect of the type of material on the reactor temperature and the efficiency of the sugar palm solid waste gasification process. The raw materials used were obtained from the Palm Sugar Flour Industrial Center in Daleman Hamlet, Tulung District, Klaten Regency. Before processing the material is first dried by drying it in the sun for a day, then proximate analysis is done. The research variable is the type of material in the form of pure sugar palm solid waste, a mixture of palm sugar solid waste and coconut shell, and pure coconut shell. The gasification process is initiated by inserting the material into the Fixed-bed Updraft Gasifier type reactor, then igniting the flammable gas and testing it for one hour. The syn gas formed is analyzed for its gas content, then burned to find out its efficiency. The results showed that the type of material influences the process temperature inside the reactor, where the optimum temperature is achieved in pure coconut gas gasification, namely the drying process at 120 °C, pyrolysis 340 °C, Reduction 650 °C, and oxidation 721 °C. The resulting gas can burn for 15 minutes, compared to a mixture of aren solid waste - shells that burn for 8 minutes and pure aren solid waste that can only burn for 1 minute.</em></p>


2021 ◽  
Vol 323 ◽  
pp. 00003
Author(s):  
Artur Bieniek ◽  
Wojciech Jerzak ◽  
Aneta Magdziarz

Biomass pyrolysis is an advanced process which leads to obtaining products as chars, primary tars and gases. Depending on pyrolysis conditions and reactor construction, the pyrolysis could be divided into three categories: slow, intermediate and fast. This work concerns the experimental analysis of an intermediate pyrolysis of biomass residues in a fixed bed reactor. As raw materials, pine bark and wheat straw were selected. Experiments were carried out at three temperatures: 400, 500 and 600 °C under constant volume flow rate of inert gas equal to 100 ml/min. Biomass samples were kept for 150 seconds in the hot zone. The main goal was to compare yields, elemental composition, and calorific values of received products under studied process conditions. The ultimate analysis of chars and organic fractions of oils was performed. Obtained results from ultimate analysis allowed to determine higher heating values by a theoretical correlation. The products of pyrolysis obtained at 600 °C characterized by the most energetic parameters. The higher heating value for organic fraction of tars was 31.62 MJ/kg while for char was 29.47 MJ/kg.


2014 ◽  
Vol 16 (2-3) ◽  
pp. 209 ◽  
Author(s):  
A. Diéguez-Alonso ◽  
A. Anca-Couce ◽  
F. Behrendt

<p>Consolidated industrial application of biomass thermochemical conversion processes, such as pyrolysis and gasification, requires the development and application of control and optimization techniques. To this end, on-line process characterization, regarding mainly product distribution and composition under similar conditions as the ones encountered in industrial applications is needed. In the present study, slow pyrolysis and updraft gasification of thermally thick particles in a technical scale fixed-bed reactor are carried out under several process conditions. Different raw materials are used: pine wood chips, beech-wood spheres and cellulose. In pyrolysis, the increasing influence of transport phenomena in the conversion process due to the use of a technical-scale reactor and thermally thick wood particles is analysed through the temperature distribution inside the bed during the process together with the char properties characterization taken from four different positions inside the bed. The influence of process conditions, such as the N<sub>2</sub> flow rate, on the products composition and distribution is also analysed. In gasification, the influence of the air to fuel ratio on the product gas composition is characterized, as well as the qualitative evolution of polycyclic aromatic hydrocarbons (PAH) representative species in the volatiles vapours by applying laser-induced fluorescence (LIF).</p>


Author(s):  
Pious O. Okekunle ◽  
Olukunle E. Itabiyi ◽  
Sunday O. Adetola ◽  
Ibraheem O. Alayande ◽  
Hoassan O. Ogundiran ◽  
...  

Fuel ◽  
2020 ◽  
Vol 265 ◽  
pp. 116910 ◽  
Author(s):  
Ahmad Zubair Yahaya ◽  
Mahendra Rao Somalu ◽  
Andanastuti Muchtar ◽  
Shaharin Anwar Sulaiman ◽  
Wan Ramli Wan Daud

Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 91 ◽  
Author(s):  
Gisele C. R. Silva ◽  
Dali Qian ◽  
Robert Pace ◽  
Olivier Heintz ◽  
Gilles Caboche ◽  
...  

Inexpensive Ni-based catalysts can afford comparable performance to costly precious metal formulations in the conversion of fat, oil, or greases (FOG) to fuel-like hydrocarbons via decarboxylation/decarbonylation (deCOx). While the addition of certain metals has been observed to promote Ni-based deCOx catalysts, the steady-state performance of bimetallic formulations must be ascertained using industrially relevant feeds and reaction conditions in order to make meaningful comparisons. In the present work, used cooking oil (UCO) was upgraded to renewable diesel via deCOx over Ni/Al2O3 promoted with Cu, Fe, or Pt in a fixed-bed reactor at 375 °C using a weight hourly space velocity (WHSV) of 1 h−1. Although all catalysts fully deoxygenated the feed to hydrocarbons throughout the entire 76 h duration of these experiments, the cracking activity (and the evolution thereof) was distinct for each formulation. Indeed, that of the Ni-Cu catalyst was low and relatively stable, that of the Ni-Fe formulation was initially high but progressively dropped to become negligible, and that of the Ni-Pt catalyst started as moderate, varied considerably, and finished high. Analysis of the spent catalysts suggests that the evolution of the cracking activity can be mainly ascribed to changes in the composition of the metal particles.


Author(s):  
Frédéric Paviet ◽  
Olivier Bals ◽  
Gérard Antonini

Gasification is an attractive technology for waste thermal treatment. The successful design and modelling of a gasifier requires reliable kinetic data. The purpose of this work is to study the steam gasification kinetics of chars produced by municipal wastes pyrolysis. The municipal solid wastes (MSW) are modelled as a mixture of four organic constituents: paper, wood, plastics, and vegetables. The various char samples are obtained by pyrolysis of each waste constituent, in a fixed bed reactor at 1000°C, in order to minimize their volatile content and thus, to eliminate any subsequent devolatilization of the carbonaceous residues. These chars are used as raw materials in steam gasification experiments. The gasification studies are performed on each char separately, in a tubular kiln at various temperatures (900°C, 950°C and 1000°C) and various vapour pressures (0.2 bar, 0.5 bar and 0.7 bar). The gases produced are analysed by gas chromatography in order to determine the gasification kinetics. The kinetics parameters, with respect to H2O, together with the influence of the char's physical properties are experimentally determined. A kinetic expression for the gasification reaction, based on the random pore model is deduced. It is shown that the char resulting from the pyrolysis of MSW constituents, essentially paper, wood and vegetables have the same gasification kinetics. On the contrary, the plastic char steam gasification kinetic appears to be significantly slower.


2014 ◽  
Vol 875-877 ◽  
pp. 1831-1836
Author(s):  
Arnoldo Emilio Delgado ◽  
Oscar F.S. Avilés ◽  
William Aperador

Currently, there are different kinds of alternative fuels called "clean fuels" within which hydrogen gas is considered. The hydrogen can be produced by various methods. The aim of this research is producing hydrogen gas by gasification of biomass in a fixed bed reactor, using a gaseous mixture with a high energy potential.


Sign in / Sign up

Export Citation Format

Share Document